Time allowed: 2 h 0 min.
The total mark for this paper is 100.
The marks for each question are shown in brackets [ ].
\(m = \dfrac{17-5}{4-1} (= 4) \)
\(m_{perp} = -\dfrac{1}{4} \)
\(y-8 = -\dfrac{1}{4}(x-2)\)
\(x + 4y = 34 \)
(i) \(0.5 × 0.5 [(e^0 + e^{2^2}) + 2(e^{0.5^2} + e^{1^2} + e^{1.5^2})] \)
\(= 20.6\)
(ii) Use more trapezia, of a narrower width, over the same interval
\((x^2 - 5)(x^2 + 1) = 0\)
\(x^2 = 5\)
\(x^2 \geq 0\), so \(x^2 + 1 = 0\) has no real solutions
\(x = \pm \sqrt{5}\)
If \(n\) is even then \(n\) can be written as \(2m\).
\(n^3 + 3n - 1 = 8m^3 + 6m - 1 \)
\(= 2(4m^3 + 3m) - 1\)
For all \(m\), \(2(4m^3+ 3m)\) is even, hence \(2(4m^3 + 3m ) - 1\) is odd.
If \(n\) is odd then \(n\) can be written as \(2m+ 1\).
\(n^3+3n–1 = 8m^3+ 12m^2+ 6m+ 1 + 6m+ 3 -1\)
\(= 8m^3+ 12m^2+ 12m+ 3\)
\(= 2(4m^3+ 6m^2+ 6m) + 3 \)
For all \(m\), \(2(4m^3+ 6m^2+ 6m)\) is even, hence \(2(4m^3+ 6m^2+ 6m) + 3\) is odd.
(i) \((x+ 3)^2-9 + (y-1)^2-1 -10 = 0\)
\((x+ 3)^2+ (y-1)^2= 20\)
centre is \((-3, 1)\)
radius is \(2\sqrt{5}\) or \(\sqrt{20}\)
(ii) \(x^2 + (2x-3)^2 + 6x - 2(2x-3) - 10 = 0\)
OR
\((x+3)^2 + (2x-4)^2 = 20\)
\(x^2 - 2x + 1 = 0\)
\(x = 1\)
\((1,-1)\)
(iii) The line is a tangent to the circle at \((1,-1)\)
Polynomials Transformations of graphs
(i) \(f(x) = (x-3)(2x^2-x-1)\)
\(f(x) = (x-3)(2x+1)(x-1)\)
(ii) Sketch of positive cubic
(–0.5, 0), (1, 0), (3, 0), (0, 3)
(iii) \(\{x:x < -0.5\}∪\{x:1 < x < 3\}\)
(iv) \(y= 2(2x)^3-7(2x)^2+ 2(2x) + 3\)
\(= 16x^3-28x^2+ 4x+ 3\)
OR
\(y= (2x-3)(4x+ 1)(2x-1)\)
Geometric sequences and series
(i) \(r = 0.98\)
\(u_{12}= 150 × 0.98^{11} \) or \(u_{13}= 150 × 0.98^{12} \)
\(u_{12} = 120.1\) or \(u_{13} = 117.7\)
\(u_{12} > 120\) and \(u_{13} < 120\), hence the thirteenth half marathon
(ii) \(\dfrac{150(1-0.98^n)}{1-0.98} = 2974\)
\(0.98^n = 0.6035\)
\(n= 25\) hence Chris has run 25 half marathons
(iii) Does not take into account possible variations in conditions
Assumes that times will continue to improve
(i) \((4-x)^{-\frac{1}{2}} = 4^{-\frac{1}{2}}(1-\frac{1}{4}x)^{-\frac{1}{2}} = \frac{1}{2}(1-\frac{1}{4}x)^{-\frac{1}{2}}\)
\((1-\frac{1}{2}x)^{-\frac{1}{2}} = 1 + (-\frac{1}{2})(-\frac{1}{4}x) + (\frac{1}{2})(-\frac{1}{2})(-\frac{3}{2})(-\frac{1}{4}x)^2 \)
\(= 1 + \frac{1}{8}x + \frac{3}{128}x^2\)
\((4-x)^{-\frac{1}{2}} = \frac{1}{2} + \frac{1}{16}x + \frac{3}{256}x^2\)
(ii) \(\frac{1}{2}a = 16 \) hence \(a= 32\)
\(2 + \frac{1}{2}b = -1\)
OR
\(\frac{1}{16}a + \frac{1}{2}b = -1\)
\(b = -6 \)
Composite functions Functions, mappings, domain and range
(i) \(f(x) = c+ 16 -(x-4)^2\)
\(c+ 16 = 19\)
\(c= 3\)
(ii) \(f(2) = c+ 12\)
\(f(c+ 12) = c+ 8(c+ 12) -(c+ 12)^2\)
\(-48 -15c-c^2= 8\)
\(c^2+ 15c+ 56 = 0\)
\(c = -7, c = -8\)
(i) \(\dfrac{dx}{dt} = 1-2t^{-2}\)
\(\dfrac{dy}{dt} = 1+2t^{-2}\)
\(\dfrac{dy}{dx} = \dfrac{1+2t^{-2}}{1-2t^{-2}} = \dfrac{\dfrac{t^2+2}{t^2}}{\dfrac{t^2-2}{t^2}}\)
\(\dfrac{dy}{dx} = \dfrac{t^2+2}{t^2-2}\)
(ii) \(\dfrac{dy}{dx} = 0 \implies t^2 + 2 = 0\)
\(t^2 \geq 0\), hence \(t^2+2=0\) has no solutions, hence curve has no stationary points
(iii) \(x + y = 2t\) hence \(t = \frac{1}{2}(x+y)\)
\(x = \frac{1}{2}(x+y) + \dfrac{2}{\frac{1}{2}(x+y)}\)
\(2x(x+ y) = (x+ y)^2+ 8\)
\(2x^2+ 2xy= x^2+ 2xy+ y^2+ 8\)
\(x^2-y^2= 8\)
(i) When \(t= 0\), \(M= 300\)
\(300e^{-0.05t} = 150\)
\(e^{-0.05t} = 0.5\)
\(-0.05t = \ln{0.5}\)
\(t= 13.9\) (minutes)
(ii) \(M_2 = 400e^{kt}\)
\(320 = 400e^{10k}\)
\(k= 0.1\ln{0.8}\)
\(M_2 = 400e^{-0.0223t}\)
Substance 1: \(\dfrac{dM_1}{dt} = -15e^{-0.05t}\)
Substance 2: \(\dfrac{dM_2}{dt} = -8.93e^{-0.0223t}\)
\(-15e^{-0.05t} = -8.93e^{-0.0223t}\)
\(e^{0.0277t} = 1.681\)
\(0.0277t= 0.519\)
time = 18.75 minutes
\(\dfrac{dy}{dx} = \dfrac{(-8\sin{2x})(3-\sin{2x})-(4\cos{2x})(-2\cos{2x})}{(3-\sin{2x})^2}\)
EITHER
when \(x = \frac{1}{4}π\), gradient \(= \dfrac{-16-0}{4} = -4 \)
OR
\(\dfrac{(-8\sin{\frac{π}{2}})(3-\sin{\frac{π}{2}})-(4\cos{\frac{π}{2}})(-2\cos{\frac{π}{2}})}{(3-\sin{\frac{π}{2}})^2} = -4\)
gradient of normal is \(\frac{1}{4}\)
area of triangle is \(\dfrac{1}{2}×\dfrac{1}{16}π×\dfrac{1}{4}π = \dfrac{1}{128}π^2\)
\(\displaystyle\int \dfrac{4\cos{2x}}{3-\sin{2x}} dx = -2\ln{|3-\sin{2x}|}\)
\(\displaystyle\int^{\frac{1}{4}π}_0 \dfrac{4\cos{2x}}{3-\sin{2x}} dx = (-2\ln{2}) - (-2\ln{3})\)
\(2\ln{3} -2 \ln{2} = \ln{9} -\ln{4} = \ln{\frac{9}{4}} \)
OR
\(2\ln{3} -2 \ln{2} = 2\ln{\frac{3}{2}} = \ln{\frac{9}{4}} \)
hence total area is \(\ln{\dfrac{9}{4}} + \dfrac{1}{128}π^2 \)
Differential equations Solve differential equations
(i) (a) \(\dfrac{dN}{dt} = \dfrac{k}{N}\)
(b) \(ft = \int N dN\)
\(kt = \frac{1}{2} N^2 + c\)
\(0 = 80000+c \implies c = -80000 \)
\(k = 96800-80000=16800\)
\(N = \sqrt{33600t+160000}\)
(ii) \(\int 3988N^{-2} dN = \int e^{-0.2t} dt\)
\(-3988N^{-1} = -5e^{-0.2t} + c\)
OR
\(-N^{-1} = -\dfrac{5}{3988}e^{-0.2t} + c\)
\(-9.97 = -5 + c \implies c = -4.97\)
OR
\(-\dfrac{1}{400} = -\dfrac{5}{3988} + c \implies c = -\dfrac{497}{398800}\)
\(\dfrac{3988}{N} = 5e^{-0.2t} + 4.97\)
OR
\(\dfrac{1}{N} = \dfrac{5}{3988}e^{-0.2t} + \dfrac{497}{398800}\)
\(N = \dfrac{3988}{5e^{-0.2t} + 4.97}\)
(iii) Model in (i) predicts that population will continue to increase
Model in (ii) predicts that population will tend towards a limit of 802