By using the laws of indices, we arrive at the laws of logarithms.
Let \(\log_a{x} = m \implies a^m = x \)
Let \(\log_a{y} = n \implies a^n = y \)
The addition law
\(a^m × a^n = xy \implies a^{m + n} = xy \)
\(\implies m + n = \log_a{xy} \)
\(\implies \boxed{\log_a{x} + \log_a{y} = \log_a{xy}} \)
This law works for three or more terms:
\(\log_a{x} + \log_a{y} + \log_a{z} + ... = \log_a{(xyz...)}\)
The subtraction law
\(\dfrac{a^m}{a^n} = \dfrac{x}{y} \implies a^{m - n} = \dfrac{x}{y} \)
\(\implies m - n = \log_a{\dfrac{x}{y}} \)
\(\implies \boxed{\log_a{x} - \log_a{y} = \log_a{\dfrac{x}{y}}} \)
The power law
Let \(\log_a{x^n} = m \implies a^m = x^n \)
Let \(\log_a{x} = y \implies a^y = x \)
\(a^m = x^n = (a^y)^n = a^{ny} \)
\(m = ny \implies \boxed{\log_a{x^n} = n\log_a{x}} \)
Change of base
This was more useful in the days before calculators had a \(\log_\square{\square}\) button. Used rarely nowadays.
\(\boxed{\log_a{b} = \dfrac{\log_n{b}}{\log_n{a}}} \)
Useful facts to remember
\(a^1 = a \iff \boxed{\log_a{a} = 1} \)
\(a^0 = 1 \iff \boxed{\log_a{1} = 0} \)
Laws of logarithms
\(\log_a{x} + \log_a{y} = \log_a{xy} \)
\(\log_a{x} - \log_a{y} = \log_a{\dfrac{x}{y}} \)
\(\log_a{x^n} = n\log_a{x} \)
\(\log_a{b} = \dfrac{\log_n{b}}{\log_n{a}} \)
Useful log facts
\(\log_a{a} = 1 \)
\(\log_a{1} = 0 \)