Solve equations of the form:
- \(a^x=b \)
- \(e^{ax+b} = p \)
- \(\ln{(ax+b)} = q \)
Exponential equations
\(a^x=b \quad \) (\(\log\) both sides)
\(\log{a^x}=\log{b} \quad \) (apply the power law)
\(x\log{a}=\log{b} \quad \) (divide by \(\log{a}\))
\(x=\dfrac{\log{b}}{\log{a}} \quad \)
Exponential equations with the natural base
\(e^{ax+b} = p \quad \) (\(\ln\) both sides)
\(\ln{e^{ax+b}}=\ln{p} \quad \) (cancel)
\(ax+b=\ln{p} \quad \) (rearrange)
\(x=\dfrac{\ln{p}-b}{a} \quad \) (rearrange)
Natural logarithmic equations
\(\ln{(ax+b)} = q \quad \) (\(e\) to the power of both sides)
\(e^{\ln{(ax+b)}}=e^{q} \quad \) (cancel)
\(ax+b=e^{q} \quad \) (rearrange)
\(x=\dfrac{e^{q}-b}{a} \quad \) (rearrange)
3