8.2 Integration of standard functions

AQA Edexcel OCR A OCR B (MEI)
General rules

\(\displaystyle\int{f'(x)} dx = f(x) + c \)

\(\displaystyle\int{\dfrac{dy}{dx}} dx = y + c \)

When integrating sums and differences of functions, integrate them separately.

\(\displaystyle\int{\big(f'(x) \pm g'(x)\big)} dx = \displaystyle\int{f'(x)} dx \pm \displaystyle\int{g'(x)} dx\)

When integrating constant multiples of functions, integrate the function and multiply by the constant.

\(\displaystyle\int{kf'(x)} dx = k\displaystyle\int{f'(x)} dx\)

\(\bm{\underline{x^n, \quad n \neq -1}} \)

When integrating \(x^n\) with respect to \(x\), increase the power \(n\) by \(1\), then divide by the new power \(n + 1\).

This works for all rational values of \(n\), i.e. fractions and negative values, except for \(-1\), because division by \(0\) is undefined.

Tip: Take care when increasing negative powers of \(n\) by \(1\), e.g. \(-2+1=-1\) not \(-3\)!

\(\boxed{\displaystyle\int{x^n} dx = \dfrac{x^{n+1}}{n+1} + c, \quad n \neq -1} \)

When integrating a number \(k\) with respect to \(x\), the result is \(kx + c\). Using the above result:

\(\displaystyle\int{k} dx = \displaystyle\int{kx^0} dx = \dfrac{kx^1}{1} + c \)

\(\implies \boxed{\displaystyle\int{k} dx = kx + c} \)

\(\bm{\underline{x^n, n = -1}} \)

\(x^{-1} = \dfrac{1}{x} \)

\(\boxed{\displaystyle\int{\dfrac{1}{x}} dx = \ln{x} + c} \)

\(\boxed{\displaystyle\int{\dfrac{1}{kx}} dx = \dfrac{1}{k}\ln{x} + c} \)

Exponential functions

\(\boxed{\displaystyle\int{e^x} dx = e^x + c} \)

\(\boxed{\displaystyle\int{e^{kx}} dx = \dfrac{1}{k}e^{kx} + c} \)

Trigonometric functions

\(\boxed{\displaystyle\int{(\sin{x})} dx = -\cos{x} + c} \)

\(\boxed{\displaystyle\int{(\cos{x})} dx = \sin{x} + c} \)

\(\boxed{\displaystyle\int{(\sec^2{x})} dx = \tan{x} + c} \)

\(\boxed{\displaystyle\int{(\sin{kx})} dx = -\dfrac{1}{k}\cos{kx} + c} \)

\(\boxed{\displaystyle\int{(\cos{kx})} dx = \dfrac{1}{k}\sin{kx} + c} \)

\(\boxed{\displaystyle\int{(\sec^2{kx})} dx = \dfrac{1}{k}\tan{kx} + c} \)

Tip: Counterclockwise for integration.


Trigonometric identities can be used to integrate more complex trigonometric functions.

For example, the power reduction formulae can be used to integrate \(\sin^2{x}\) and \(\cos^2{x}\).
Important
Standard integration results

\(\displaystyle\int{x^n} dx = \dfrac{x^{n+1}}{n+1} + c, \quad n \neq -1 \)

\(\displaystyle\int{\dfrac{1}{kx}} dx = \dfrac{1}{k}\ln{x} + c \)

\(\displaystyle\int{e^{kx}} dx = \dfrac{1}{k}e^{kx} + c \)

\(\displaystyle\int{(\sin{kx})} dx = -\dfrac{1}{k}\cos{kx} + c \)

\(\displaystyle\int{(\cos{kx})} dx = \dfrac{1}{k}\sin{kx} + c \)

\(\displaystyle\int{(\sec^2{kx})} dx = \dfrac{1}{k}\tan{kx} + c \)
3