Half angle formulae
Substituting \(\dfrac{\theta}{2}\) into \(A\) for \(\cos{2A}\) gives:
\(\cos{\theta} ≡ 1 - 2\sin^2{\dfrac{\theta}{2}}\)
\(\implies \sin^2{\dfrac{\theta}{2}} ≡ \dfrac{1 - \cos{\theta}}{2}\)
\(\implies \boxed{\sin{\dfrac{\theta}{2}} ≡ ±\sqrt{\dfrac{1 - \cos{\theta}}{2}}}\)
Alternatively:
\(\cos{\theta} ≡ 2\cos^2{\dfrac{\theta}{2}} - 1\)
\(\implies \dfrac{\cos{\theta} + 1}{2} ≡ \cos^2{\dfrac{\theta}{2}} \)
\(\implies \boxed{±\sqrt{\dfrac{\cos{\theta} + 1}{2}} ≡ \cos{\dfrac{\theta}{2}}} \)
Applying the identity: \(\tan{\theta} ≡ \dfrac{\sin{\theta}}{\cos{\theta}}\)
\(\tan{\dfrac{\theta}{2}} ≡ \dfrac{±\sqrt{\dfrac{1 - \cos{\theta}}{2}}}{±\sqrt{\dfrac{\cos{\theta} + 1}{2}}} \)
\(\tan{\dfrac{\theta}{2}} ≡ ±\sqrt{\dfrac{\dfrac{1 - \cos{\theta}}{\cancel{2}}}{\dfrac{\cos{\theta} + 1}{\cancel{2}}}} \)
\(\implies \boxed{\tan{\dfrac{\theta}{2}} ≡ ±\sqrt{\dfrac{1 - \cos{\theta}}{\cos{\theta} + 1}}} \)
Knowledge of \(\tan{\dfrac{\theta}{2}}\) is not required, but is provided here for completeness.
These are
not provided in the formula book. You don't have to memorise them, as long as you can derive them.
Power reduction formulae
Rearranging the identity for \(\cos{2A}\) gives:
\(\cos{2A} ≡ 1 - 2\sin^2{A}\)
\(\implies 2\sin^2{A} ≡ 1 - \cos{2A}\)
\(\implies \boxed{\sin^2{A} ≡ \dfrac{1 - \cos{2A}}{2}} \)
Alternatively:
\(\cos{2A} ≡ 2\cos^2{A} - 1\)
\(\implies \cos{2A} + 1 ≡ 2\cos^2{A}\)
\(\implies \boxed{\dfrac{\cos{2A} + 1}{2} ≡ \cos^2{A}}\)
These are
not provided in the formula book. You don't have to memorise them, as long as you can derive them.
Tip: Power reduction formulae are particularly useful for integrating \(\sin^2{A}\) and \(\cos^2{A}\)
Half angle formulae
\(\sin{\dfrac{\theta}{2}} ≡ ±\sqrt{\dfrac{1 - \cos{\theta}}{2}} \)
\(\cos{\dfrac{\theta}{2}} ≡ ±\sqrt{\dfrac{1 + \cos{\theta}}{2}} \)
Power reduction formulae
\(\sin^2{A} ≡ \dfrac{1 - \cos{2A}}{2} \)
\(\cos^2{A} ≡ \dfrac{1 + \cos{2A}}{2}\)