The
variance (\(\sigma^2\)) is a measure of spread of a data set, and indicates how much each data point deviates from the mean.
\(\sigma^2 = \dfrac{\sum{(x-\bar{x})^2}}{n} = \dfrac{\sum{x^2}}{n} - \Big(\dfrac{\sum{x}}{n}\Big)^2\)
Alternatively, using the
summary statistic \(S_{xx}\):
\(S_{xx} = \sum{(x-\bar{x})^2} = \sum{x^2} - \dfrac{(\sum{x})^2}{n}\)
\(\sigma^2 = \dfrac{S_{xx}}{n}\)
The
standard deviation (\(\sigma\)) is the square root of the variance.
\(\sigma = \sqrt{\dfrac{\sum{(x-\bar{x})^2}}{n}} = \sqrt{\dfrac{\sum{x^2}}{n} - \Big(\dfrac{\sum{x}}{n}\Big)^2}\)
Alternatively:
\(\sigma = \sqrt{\dfrac{S_{xx}}{n}}\)
Grouped frequency
\(\sigma^2 = \dfrac{\sum{f(x-\bar{x})^2}}{\sum{f}} = \dfrac{\sum{fx^2}}{\sum{f}} - \Big(\dfrac{\sum{fx}}{\sum{f}}\Big)^2\)
\(\sigma = \sqrt{\dfrac{\sum{f(x-\bar{x})^2}}{\sum{f}}} = \sqrt{\dfrac{\sum{fx^2}}{\sum{f}} - \Big(\dfrac{\sum{fx}}{\sum{f}}\Big)^2}\)
Variance
\(\sigma^2 = \dfrac{\sum{(x-\bar{x})^2}}{n} = \dfrac{\sum{x^2}}{n} - \Big(\dfrac{\sum{x}}{n}\Big)^2\)
For grouped frequency:
\(\sigma^2 = \dfrac{\sum{f(x-\bar{x})^2}}{\sum{f}} = \dfrac{\sum{fx^2}}{\sum{f}} - \Big(\dfrac{\sum{fx}}{\sum{f}}\Big)^2\)
Standard deviation
\(\sigma = \sqrt{\dfrac{\sum{(x-\bar{x})^2}}{n}} = \sqrt{\dfrac{\sum{x^2}}{n} - \Big(\dfrac{\sum{x}}{n}\Big)^2}\)
For grouped frequency:
\(\sigma = \sqrt{\dfrac{\sum{f(x-\bar{x})^2}}{\sum{f}}} = \sqrt{\dfrac{\sum{fx^2}}{\sum{f}} - \Big(\dfrac{\sum{fx}}{\sum{f}}\Big)^2}\)
3