4.2 Binomial expansion

AQA Edexcel OCR A OCR B (MEI)
A binomial has the form (a+b)n(a+b)^n. When nn is a positive integer, it can be expanded according to this formula:

(a+b)n=(n0)anb0+(n1)an1b1+(n2)an2b2+...+(nn1)a1bn1+(nn)anb0(a+b)^n = \dbinom{n}{0} a^n b^0 + \dbinom{n}{1} a^{n-1} b^1 + \dbinom{n}{2} a^{n-2} b^2 + ... + \dbinom{n}{n-1} a^1 b^{n-1} + \dbinom{n}{n} a^n b^0

Pascal's Triangle

The coefficients of the binomial expansion form a pattern known as Pascal's Triangle. (The first row is the 0th row.)



For example, the 4th row of the triangle shows the coefficients for the expansion of (a+b)4(a+b)^4.

For high powers of nn, it is quicker to use the nCr^nC_r method for finding the coefficients, because it takes a while to write out Pascal's Triangle.

Uses of the binomial expansion

The binomial expansion can be used for approximations and calculating binomial probabilities.
Important
Binomial expansion

(a+b)n=(n0)anb0+(n1)an1b1+(n2)an2b2+...+(nn1)a1bn1+(nn)anb0(a+b)^n = \dbinom{n}{0} a^n b^0 + \dbinom{n}{1} a^{n-1} b^1 + \dbinom{n}{2} a^{n-2} b^2 + ... + \dbinom{n}{n-1} a^1 b^{n-1} + \dbinom{n}{n} a^n b^0
3