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Section A (36 marks)

1 (i) Express 
x

x

x2

5

1-

-

+^ ^h h
 in partial fractions. [3]

 (ii) Hence or otherwise find the first 3 terms of the binomial expansion of 
x

x

x2

5

1-

-

+^ ^h h
 in ascending 

powers of x. [5]

2 The equation of a line is r
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 and the equation of a plane is 3x + 4y − z = 17.

 (i) Find the coordinates of the point of intersection of the line and the plane. [4]

 (ii) Find the acute angle between the line and the normal to the plane. [4]

3 Fig. 3 shows the curve y 1 e x2
= + .

y

x
–1 1O

Fig. 3

 The value of x1 e dx2

1

1
+

-

y  is to be estimated using the trapezium rule. T
2
 and T

4
 are the estimates obtained 

 from the trapezium rule using 2 strips and 4 strips respectively.

 (i) Explain whether T
4
 is greater or less than T

2
. [2]

 (ii) Evaluate T
4
, giving your answer to 3 significant figures. [4]

4 Vectors u and v are given by u = i − 7j − 2k and v = ai + bj + 5k, where a and b are constants.

 Find a and b given that the magnitude of v is 27 and that u and v are perpendicular. [6]

5 Solve the equation 4 tan i tan 2i = 1, for ° °0 1801 1i . [4]

6 The number of bacteria in a population at time t is denoted by P. The rate of increase of P is proportional to 

the square root of P.

 (i) Write down a differential equation relating P, the time t, and a constant of proportionality k. [1]

 (ii) Verify that P = (A + Bt)
2
, where A and B are constants, satisfies the differential equation, and find k in 

terms of B. [3]
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Section B (36 marks)

7 The curve shown in Fig. 7 passes through the origin and satisfies the differential equation

x

y

y

x

4 3
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+^ h
 .
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O

Fig. 7

 (i) Show by integration that the equation of the curve is 9x
2 − 4y

2 − 24y = 0. [5]

 The finite region bounded by the curve and the line y = 2 is rotated through 180° about the y-axis.

 (ii) Find the volume of the solid of revolution generated, giving your answer as an exact multiple of r. 

 [4]

 (iii) Use the substitutions tanx 2 i=  and secy 3 1i= -^ h

  (A) to verify that 9x
2 − 4y

2 − 24y = 0,

  (B) to show that 
y

x

4 3

9

+^ h
 can be expressed as sink i , where k is a constant to be found.

  Hence find the exact gradient of the curve at the point with x-coordinate 2. [9]
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8 Fig. 8 shows the curve with parametric equations

cosx 2i= , cos siny 2i i= + ,  for 1 Gr i r- .

 The curve intersects the x-axis at A, and the points B and C have maximum x- and y-coordinates respectively.

C

B

O A β

y

x

Fig. 8

 (i) Find the value of i corresponding to the point B. Hence find the coordinates of the point B. [3]

 (ii) Express cos i + 2 sin i in the form R cos(i − a), where R 02  and 0
2

1
1 1a r . [5]

 (iii) Hence find the coordinates of the points A and C. [5]

 The angle b is the angle between the tangents to the curve at A.

 (iv) Find 
x

y

d

d
 in terms of i. Hence, assuming the scales of the x- and y-axes are equal, find b, giving the 

  answer in radians correct to 2 decimal places.   [You may assume the curve is symmetrical about the 

  x-axis.] [5]

END OF QUESTION PAPER
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1 State the set of values of x
0 

for which the iteration 

. ( )x x x2 5 1
n n n1
= -

+

 (i) converges to a single non-zero number,  [1]

 (ii) has all terms from x
1
 onwards equal to zero. [1]

1(i)

1(ii)
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2 (i) Use the algebraic method indicated in lines 68 to 70 to find the equilibrium point of the iteration

     ( ).x x x11 6
n n n1
= -

+
. [2]

 (ii) Show that the iteration

x x 2
n n1

2
= +

+

 

  does not have any points of equilibrium.  [2]

2(i)

2(ii)
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3 One of the assumptions for the model used for the population of squirrels in the text was that there are no 

predators. 

 An alternative model is proposed in which predators kill a fixed number of squirrels each year.

 An iterative equation for this model is given by

( ) .x x xk 1 0 25
n n n1
= - -

+
.

 In the table below x
0
 is taken to be 0.55 and four different values are considered for k.

 (i) Complete as many of the empty cells as you need to in order to establish the outcomes for these values 

of k.

 (ii) Comment on what the table tells you for each of the four values of k.    [6]

3(i)

( ) .x kx x1 0 25
n n n1
= - -

+

k = 2 k = 3 k = 4 k = 5

x
0

0.55 0.55 0.55 0.55

x
1

0.245 0.4925 0.74 0.9875

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

x
10

... ... ... ... ...
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4 (i) Table 3 gives the first four points of bifurcation of the iteration

( )x kx x1
n n n1
= -

+
.

  Feigenbaum’s Constant is 4.6692 correct to 5 significant figures. Using this value for the ratio of the 

interval lengths, estimate the values of k for the next two points of bifurcation. [3]

 (ii)  (A) Find, S, the sum to infinity of the geometric series 

. . .
... .1

4 6692
1

4 6692
1

4 6692
1

2 3

+ + + +

J

L

K
K

J

L

K
K

N

P

O
O

N

P

O
O

[2]

  (B) Using certain figures from Table 3, a value of k is estimated to be

k = 3.5644 + 0.0203 × S.

   State what happens at this value of k. [1]

4(i)
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4(ii)(A)

4(ii)(B)

END OF QUESTION PAPER
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Feigenbaum’s Constant

A population model

A remote island has a population of squirrels. There are no predators so that the population is limited only 

by the supply of food and death from natural causes. 

How would the number of squirrels be expected to change from year to year?

A simple model involves the following variables.

• Time is measured in years and the year number is denoted by n. In this article, year n is also 

described as ‘this year’ and year n +1 as ‘next year’. 

• The size of the squirrel population is given as the proportion of the maximum possible 

population; the population is given at the start of each year. The population in year n is denoted 

by x
n
 where x0 1

n
G G . Similarly, in year n +1 the population is x

n 1+
.

• A parameter k is a measure of the reproductivity of the squirrels, and so determines the rate of 

growth of their population.

 The model involves the following assumptions.

• The number of squirrels next year, x
n 1+

, is jointly proportional to the number this year, x
n
, and 

to the quantity ( )x1
n

-  which represents the food available. 

• The parameter k is the constant of proportionality.

The model can be expressed by the iterative equation

( )x kx x1
n n n1
= -

+
.

This is a general model for a population in a restricted environment without predators. The animals do not 

have to be squirrels. 

5

10

15

20
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Different values of k

To investigate this model, it is first necessary to choose values for k and for the initial population, x
0
. 

Table 1 gives the first ten values of x
n
 for four particular values of k and with x

0
 = 0.5. The numbers given 

in the table have been truncated; many more figures were used in calculating them. 

( )x kx x1
n n n1
= -

+

k = 0.6 k = 1.5 k = 3.3 k = 4.5

x
0

0.5 0.5 0.5 0.5

x
1

0.15 0.375 0.825 1.125

x
2

0.0765 0.3515... 0.4764... −0.6328...

x
3

0.0423... 0.3419... 0.8231... −4.649...

x
4

0.0243... 0.3375... 0.4803... −118.2...

x
5

0.0142... 0.3354... 0.8237... –

x
6

0.0084... 0.3343... 0.4791... –

x
7

0.0050... 0.3338... 0.8235... –

x
8

0.0029... 0.3335... 0.4795... –

x
9

0.0017... 0.3334... 0.8236... –

x
10

0.0010... 0.3333... 0.4794... –

... ... ... ... ...

 

Table 1

The different values of k used in Table 1 lead to four different outcomes for the population in this model.

• When k = 0.6, x 0
n
" . Eventually the population dies out.

• When k = 1.5, . ...x 0 3333
3
1

n
" = . The population attains a stable equilibrium level. 

• When k = 3.3, the population alternates between a high value of 0.823... and a low value of 

0.479... in successive years.

• When k = 4.5, the population appears to become negative and so to have died out. In the first 

year the population exceeds the limit of 1 and so the model has broken down.

In each case in Table 1 the value of x
0
 was taken to be 0.5, the middle of the possible values of x

0
. If you 

try other starting values you will find that the final outcomes are the same for any values of x
0
 between, 

but not including, 0 and 1.

Overall the model suggests that having too few or too many young can both be fatal for the population.
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Possible outcomes

This iteration can be used as a population model, but it can also be thought of as a mathematical iteration 

in its own right with an interesting variety of possible outcomes. 

At this stage it is helpful to extend the notation used to include the letter x. This denotes the value, or 

values, of x
n
 as n tends to infinity.

In Fig. 2, these limiting values, x, are plotted for values of k between 0 and 3.6. For larger values of k 

there are no limiting values. It is assumed that x0 1
0

1 1 . 

 

1

x

0.5

0.5 1 1.5 2 2.5 3 3.5 4 4.50
k

Tending to 0 Converging Oscillating Chaos Unbounded

Fig. 2

Fig. 2 shows that, for this iteration, five different types of outcome are possible according to the value 

of k. These are described below. 

Tending to zero

For k0 1G G , the iteration converges to zero.

Converging to a single non-zero value 

For k1 31 1 , the iteration converges to a non-zero value between 0 and 1.

An example of this is given in Table 1 for k = 1.5. The iteration is found to converge to 
3
1

. This value 

may be described as an equilibrium point. 

55

60

65
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70

75

80

85

90

It can be found algebraically. Denoting it by x gives the equation

. ( )x x x1 5 1= -

 

which has a solution of x = 0 or 
3
1

. 

Oscillating

Table 1 shows that for k = 3.3, x
n
 oscillates between two values. There is a range of values of k for which 

this occurs. 

• For k = 2.99, x
n 

converges slowly to 0.6655... . At k = 3, it starts to oscillate. After 5000 

iterations the low value is 0.6633... and the high value is 0.6699... . This is a cycle of length 2.

Thus it is found, for example by experiment using a spreadsheet, that the smallest value of k for which the 

iteration oscillates is 3. Such a value of k where the iteration splits is called a point of bifurcation.

However, k = 3 is not the only point of bifurcation. At k = 3.449... there is a further point of bifurcation at 

which the cycle of length 2 becomes a cycle of length 4. 

• For k = 3.5, the four values of x are 0.3828..., 0.8269..., 0.5008... and 0.8749... . 

Another point of bifurcation occurs at k = 3.544... . At this point the length of the cycle goes up to 8. 

Further points of bifurcation give cycles of length 16, then 32, then 64 and so on. 

Chaos

The pattern of cycles of increasing length does not continue indefinitely as k increases. For larger values 

of k, for example k = 3.8, the outcomes have no pattern, and so the situation is described as chaos. 

It is very difficult to distinguish between chaos and a long cycle; a sophisticated computer program is 

required.

A feature of chaos is that the iteration remains bounded. The values of x
n
 are always between 0 and 1.

Unbounded outcomes

For values of k 4H , the outcomes cease to be bounded. An example of this occurs in the final column of 

Table 1, where the value of k is 4.5. 
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Feigenbaum’s Constant

To summarise, from k = 1 to 3 the iteration ( )x kx x1
n n n1
= -

+
 converges to a single non-zero value. 

There is then a point of bifurcation and this is followed by further points of bifurcation. It is evident from 

Fig. 2 that the intervals between successive points of bifurcation become progressively shorter. 

Information about these intervals is given in Table 3. The numbers in this table have been rounded to 

4 decimal places.

Cycle length Boundary values of k Interval
Previous interval

This interval

1 1 3 2 –

2 3 3.4495 0.4495 4.4494

4 3.4495 3.5441 0.0946 4.7516

8 3.5441 3.5644 0.0203 4.6601

16 3.5644 ... ... ...

Table 3

The right hand column gives the ratio by which the length of this interval decreases with successive 

cycles. The three values of this ratio in Table 3 are close together. 

In the 1970s, Mitchell Feigenbaum started to investigate this ratio. He discovered that similar patterns of 

bifurcation are found with many other iterations; examples include x x k
n n1

2
= +

+
 and ( )sinx k x

n n1
r=

+
.

He also discovered that the ratio tends to a definite limit and that this has the same value for all iterations 

that show this pattern of bifurcation. 

His work was conducted to a very high level of accuracy and covered many more cycles than the small 

number considered here. The limited power of computers in those days meant that it was an enormous 

undertaking.

Feigenbaum was immediately convinced of the importance of his discovery.

‘I called my parents that evening and told them I had discovered something truly remarkable, that, when 

I had understood it, would make me a famous man.’

He is indeed now a famous man and the ratio he discovered is called Feigenbaum’s Constant. It has now 

been found to over 1000 figures; the first ten of these are 4.669 201 609. 

95

100

105

110

115



7

4754/01B Ins Jun17© OCR 2017

BLANK PAGE



8

4754/01B Ins Jun17© OCR 2017

Oxford Cambridge and RSA

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials.  OCR has attempted to identify and contact all copyright holders 

whose work is used in this paper.  To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright 

Acknowledgements Booklet.  This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible 

opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE. 

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a 

department of the University of Cambridge.


	C4A_2017_June
	C4A_2017_June
	4754-01A-QP insert-Jun17.pdf
	C4B_2017_June
	C4B_2017_June
	4754-01B-QP-Jun17.pdf
	4754-01B-Insert-Jun17.pdf
	legacy-as-and-a-level-grade-boundaries-june-2017.pdf





