

# Higher

## GCSE

## **Mathematics - Paper 6**

## J560/06: Paper 6 (Higher tier)

General Certificate of Secondary Education

## Mark Scheme for June 2022

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2022

### MARKING INSTRUCTIONS

## PREPARATION FOR MARKING RM ASSESSOR

- 1. Make sure that you have accessed and completed the relevant training packages for on-screen marking: RM Assessor Online Training; OCR Essential Guide to Marking.
- 2. Make sure that you have read and understood the mark scheme and the question paper for this unit. These are available in RM Assessor.
- 3. Log-in to RM Assessor then mark and annotate the **required number** of practice responses ("scripts") and the **required number** of standardisation responses.

#### MARKING

- 4. Mark strictly to the mark scheme.
- 5. Marks awarded must relate directly to the marking criteria.
- 6. The schedule of dates is very important. It is essential that you meet the RM Assessor 50% and 100% deadlines. If you experience problems, you must contact your Team Leader (Supervisor) without delay.
- 7. If you are in any doubt about applying the mark scheme, consult your Team Leader via the RM Assessor messaging system.
- 8. Where a candidate has crossed out a response and provided a clear alternative then the crossed out response is not marked. Where no alternative response has been provided, examiners should give candidates the benefit of the doubt and mark the crossed out response where legible.
- 9. When a candidate provides contradictory responses, then no mark should be awarded, even if one of the answers is correct.
- 10. On each blank page the annotation **BP** must be inserted to confirm that the page has been checked. For additional objects (if present), a tick must be inserted on each page to confirm that it has been checked.

- 11. There is a NR (No Response) option. Award NR (No Response)
  - if there is nothing written at all in the answer space
  - OR if there is a comment which does not in any way relate to the question (e.g. 'can't do', 'don't know')
  - OR if there is a mark (e.g. a dash, a question mark) which is not an attempt at the question.

The hash key (#) on your keyboard will enter NR.

Note: Award 0 marks for an attempt that earns no credit (including copying out the question).

12. The RM Assessor **comments box** is used by the Principal Examiner or your Team Leader to explain the marking of the practice responses. Please refer to these comments when checking your practice responses. **Do not use the comments box for any other reason.** 

If you have any questions or comments for your Team Leader, use the RM Assessor messaging system.

- 13. Assistant Examiners should send a brief report on the performance of candidates to their Team Leader (Supervisor) by the end of the marking period. Please follow the direction of your Team Leader about which questions you should report on and how to submit your report. Your report should contain notes on particular strengths displayed as well as common errors or weaknesses.
- 14. Annotations available in RM Assessor. These **must** be used whenever appropriate during your marking.

| Annotation | Meaning                                                                                       |
|------------|-----------------------------------------------------------------------------------------------|
| ✓          | Correct                                                                                       |
| ×          | Incorrect                                                                                     |
| BOD        | Benefit of doubt                                                                              |
| FT         | Follow through                                                                                |
| ISW        | Ignore subsequent working (after correct answer obtained), provided method has been completed |
| MO         | Method mark awarded 0                                                                         |
| M1         | Method mark awarded 1                                                                         |

| M2       | Method mark awarded 2      |
|----------|----------------------------|
| A1       | Accuracy mark awarded 1    |
| B1       | Independent mark awarded 1 |
| B2       | Independent mark awarded 2 |
| MB       | Misread                    |
| SC       | Special case               |
| <b>^</b> | Omission sign              |
| BP       | Blank page                 |
| SEEN     | Seen                       |

For a response awarded zero (or full) marks a single appropriate annotation (cross, tick, M0 or ^) is sufficient, but not required. For responses that are not awarded either 0 or full marks, you must make it clear how you have arrived at the mark you have awarded and all responses must have enough annotation for a reviewer to decide if the mark awarded is correct without having to mark it independently.

It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

#### **Subject-Specific Marking Instructions**

- 15. M marks are for <u>using a correct method</u> and are not lost for purely numerical errors.
   A marks are for an <u>accurate</u> answer and depend on preceding M (method) marks. Therefore M0 A1 cannot be awarded.
   B marks are <u>independent</u> of M (method) marks and are for a correct final answer, a partially correct answer, or a correct intermediate stage.
   SC marks are for <u>special cases</u> that are worthy of some credit.
- 16. The following abbreviations are commonly found in GCSE Mathematics mark schemes.
  - **figs 237**, for example, means any answer with only these digits. You should ignore leading or trailing zeros and any decimal point e.g. 237000, 2.37, 2.370, 0.00237 would be acceptable but 23070 or 2374 would not.
  - isw means ignore subsequent working after correct answer obtained and applies as a default.
  - nfww means not from wrong working.
  - oe means or equivalent.
  - rot means rounded or truncated.
  - soi means seen or implied.
  - **dep** means that the marks are **dependent** on the marks indicated. You must check that the candidate has met all the criteria specified for the mark to be awarded.
  - with correct working means that full marks must not be awarded without some working. The required minimum amount of working will be defined in the guidance column and SC marks given for unsupported answers.
- 17. Anything in the mark scheme which is in square brackets [...] is not required for the mark to be earned, but if present it must be correct.
- 18. Unless the command word requires that working is shown and the working required is stated in the mark scheme, then if the correct answer is clearly given and is not from wrong working full marks should be awarded.

Do not award the marks if the answer was obtained from an incorrect method, i.e. incorrect working is seen and the correct answer clearly follows from it.

19. Where follow through (**FT**) is indicated in the mark scheme, marks can be awarded where the candidate's work follows correctly from a previous answer whether or not it was correct. For questions with FT available you must ensure that you refer back to the relevant previous answer. You may find it easier to mark these questions candidate by candidate rather than question by question.

Figures or expressions that are being followed through are sometimes encompassed by single quotation marks after the word their for clarity, e.g. FT 180 × (their '37' + 16), or FT 300 –  $\sqrt{(\text{their '52 + 72'})}$ . Answers to part questions which are being followed through are indicated by e.g. FT 3 × their (a).

- 20. In questions with no final answer line, make no deductions for wrong work after an acceptable answer (i.e. isw) unless the mark scheme says otherwise, indicated by the instruction 'mark final answer'.
- 21. In questions with a final answer line and incorrect answer given:
  - (i) If the correct answer is seen in the body of working and the answer given on the answer line is a clear transcription error allow full marks unless the mark scheme says 'mark final answer'. Place the annotation ✓ next to the correct answer.
  - (ii) If the correct answer is seen in the body of working but the answer line is blank, allow full marks. Place the annotation ✓ next to the correct answer.
  - (iii) If the correct answer is seen in the body of working but a completely different answer is seen on the answer line, then accuracy marks for the answer are lost. Method marks could still be awarded if there is no other method leading to the incorrect answer. Use the M0, M1, M2 annotations as appropriate and place the annotation × next to the wrong answer.
- 22. In questions with a final answer line:
  - (i) If one answer is provided on the answer line, mark the method that leads to that answer. A correct step, value or statement that is not part of the method that leads to the given answer should be awarded **MO** and/or **BO**.
  - (ii) If more than one answer is provided on the answer line and there is a single method provided, award method marks only.
  - (iii) If more than one answer is provided on the answer line and there is more than one method provided, award marks for the poorer response unless the candidate has clearly indicated which method is to be marked.
- 23. In questions with **no final answer line**:
  - (i) If a single response is provided, mark as usual.
  - (ii) If more than one response is provided, award marks for the poorer response unless the candidate has clearly indicated which response is to be marked.
- 24. When the data of a question is consistently misread in such a way as not to alter the nature or difficulty of the question, please follow the candidate's work and allow follow through for **A** and **B** marks. Deduct 1 mark from any **A** or **B** marks earned and record this by using the **MR** annotation. **M** marks are not deducted for misreads. If a candidate corrects the misread in a later part, do not continue to follow through, but award **A** and **B** marks for the correct answer only.

#### Mark Scheme

- 25. Unless the question asks for an answer to a specific degree of accuracy, always mark at the greatest number of significant figures even if this is rounded or truncated on the answer line. For example, an answer in the mark scheme is 15.75, which is seen in the working. The candidate then rounds or truncates this to 15.8, 15 or 16 on the answer line. Allow full marks for the 15.75.
- 26. Ranges of answers given in the mark scheme are always inclusive.
- 27. For methods not provided for in the mark scheme give as far as possible equivalent marks for equivalent work. If in doubt, consult your Team Leader.
- 28. If in any case the mark scheme operates with considerable unfairness consult your Team Leader.

| Q | uestic | on  | Answer                                                 | Marks | Part marks and gu                                    | idance                                                                                                                       |
|---|--------|-----|--------------------------------------------------------|-------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| 1 |        | (a) | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 2     | <b>B1</b> for at least 7 correct values in the table |                                                                                                                              |
|   |        | (b) | 8<br>16<br>00                                          | 1FT   |                                                      | Isw if final answer comes<br>from simplifying $\frac{8}{16}$<br>Accept decimal, percentage<br>with % but not ratio or "in".  |
|   |        | (c) | 4<br>16 00                                             | 1FT   |                                                      | Isw if final answer comes<br>from simplifying $\frac{4}{16}$<br>Do not penalise ratio or "in" if<br>already penalised in (b) |

| Question | Answer                       | Marks | Marks Part marks and guidance                                                                                                                                                                                   |                                                                                                        |
|----------|------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| 2        | 42.09[] with correct working | 4     |                                                                                                                                                                                                                 | Correct working requires evidence of at least <b>M1</b>                                                |
|          |                              |       | <b>M3</b> for $\pi \times \left(\frac{23}{2\pi}\right)^2$                                                                                                                                                       | Do not accept starting with 42.1 and working backwards                                                 |
|          |                              |       | OR                                                                                                                                                                                                              | Candidates should use the $\pi$ button or 3.142. Accept 3.14 and 22/7 for max of <b>M3</b>             |
|          |                              |       | <b>M1</b> for $23 \div 2\pi$ or $23 = 2\pi r$ or $23 = \pi d$<br><b>A1</b> for 3.66[]                                                                                                                           | <b>M1</b> may be in two steps or<br>seen as diameter here and<br>diameter/2 in the area<br>calculation |
|          |                              |       | <b>M1</b> for $\pi \times (\text{their } 3.66)^2$                                                                                                                                                               | their 3.66 must come from a calculation involving $\pi$                                                |
|          |                              |       | If 0 or 1 scored, instead award<br>SC2 for 42.09[] with no or insufficient<br>working<br>If 0 scored, instead award<br>SC1 for 3.66[], 42.08[], 42.10[],<br>42.11[] or 168[] with no or<br>insufficient working |                                                                                                        |

| Question | Answer       | Marks | Part marks and guidance                                                                                                                                                                                                |                                                                                                 |
|----------|--------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 3        | 8 min 15 sec | 4     | <b>B3</b> for 8.25 or $8\frac{1}{4}$ or $8\frac{15}{60}$<br>or for answer 8m 25s<br>OR<br><b>M1</b> for $3.3 \times 10^{-6} \times 1.5 \times 10^{8}$ oe soi by figs<br>495<br>and<br><b>M1FT</b> for (their 495 ÷ 60) | eg $\frac{1.5 \times 10^8}{303030 \{.3\}}$<br>their 495 from attempt at a correct M1 expression |

| Q | uestion | Answer                       | Marks | Part marks and guidance                                                                                                                                                                                                                                    |                                                                                                                              |  |
|---|---------|------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--|
| 4 |         | 4 and 25 nfww                | 4     | <b>B3</b> $\frac{10a^4 \times a^8}{25a^5} = \frac{2a^7}{5}$<br>OR                                                                                                                                                                                          | Otherwise, condone<br>embedded answers for M<br>marks only                                                                   |  |
|   |         |                              |       | B2 for k = 4<br>or<br>M1 any correct simplification of $\frac{a^k \times a^8}{a^5} = a^7$<br>eg<br>$[a^k \times] a^3 [= a^7]$ or $[a^k \times a^8 =] a^{12}$<br>$a^k = a^4$<br>$\frac{a^{k+8}}{[a^5]} [= a^7]$<br>k + 8 - 5 = 7 oe<br>and<br>B2 for m = 25 | <b>M1</b> applying correctly a law<br>of indices<br>May be seen within an<br>attempt to simplify with other<br>coefficients. |  |
|   |         |                              |       | or<br><b>M1</b> for $\frac{10}{m} = \frac{2}{5}$ oe                                                                                                                                                                                                        | Allow [m] = 10 × 5 ÷ 2                                                                                                       |  |
| 5 |         | Yes SSS<br>Yes ASA<br>No     | 3     | B2 for two correct rows<br>or<br>B1 for one correct row                                                                                                                                                                                                    | Accept ticks and crosses<br>For "No" ignore reason                                                                           |  |
| 6 | (a)     | 425                          | 2     | M1 for 680 ÷ 1.6[0] oe                                                                                                                                                                                                                                     | e.g. [0].68[0] ÷ [0].0016                                                                                                    |  |
|   | (b)     | 1600 or 1.6 ×10 <sup>3</sup> | 1     |                                                                                                                                                                                                                                                            |                                                                                                                              |  |

| Q | uestion    | Answer                                   | Marks | Part marks and g                                                                                                                                         | uidance                                                                                                                                                                                                                      |
|---|------------|------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7 | (a)        | x <sup>2</sup> + [1]x – 20 final answer  | 2     | M1 for at least three of x <sup>2</sup> , [+]5x , − 4x , − 20                                                                                            | M1 may be seen in a table<br>e.g.<br>x4<br>$x x^2 -4x$<br>[+] 5 [+]5x -20<br>[1]x counts as two terms<br>M1 for for x <sup>2</sup> + [1]x + - 20<br>Do not accept poor algebra<br>e.g. x5 for 5x or x × x for x <sup>2</sup> |
| 8 | (b)<br>(a) | (x – 5)(x + 5) final answer<br>1852 1945 | 3     | <b>B2</b> for 1852 or 1945<br>or for 1852.2 with either 1944.[6] or<br>1944.8[1]<br>or<br><b>M1</b> for 1764 $\times \frac{5}{100}$ + 1764 oe soi 1852.2 | Condone missing final<br>bracket<br>e.g. 1764 × 1.05<br>e.g. 1600 × 1.05 <sup>3</sup><br>NC% methods<br><b>M0</b> for just labels eg 10% =<br>then 5% =<br><b>M1</b> for 1764 ÷ 10 = [x]. [x] ÷<br>2 = [y], [y] + 1764       |

| Q | Question |  | Answer                                                                      | Marks | Part marks and guidance                                                                                                                                                                 |                                                                                                                                                                                                                                      |  |
|---|----------|--|-----------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|   | (b)      |  | Correct curved graph                                                        | 3     | <ul> <li>B2 for 5 of their points plotted correctly or</li> <li>B1 for 4 of their points plotted correctly or 5 of their points plotted at correct height but incorrect time</li> </ul> | ½ square accuracyStick graphmark heights aspoints max B2If stick graph and curveregard as choice and markpoints/heights onlyBar chartIf points clearly marked,mark the pointsIf points not clear B0Ruled line or line segmentsmax B2 |  |
|   | (c)      |  | Increases [to 2000]<br>Flattens/levels off/plateaus/horizontal [at<br>2000] | 1     |                                                                                                                                                                                         | See Appendix<br>2000/the maximum must be<br>seen once for 2 marks<br>Accept approx./about 2000<br>Condone embellishments<br>such as "slight fall" after<br>correct statement or<br>reference to line of best fit                     |  |

| Question | Answer                     | Marks | Part marks and gu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | iidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------|----------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9        | 25[%] with correct working | 5     | <b>B2</b> for 12 600<br>or<br><b>M1</b> for 18 000 $\times \frac{70}{100}$ oe or for 18 000 $\times \frac{30}{100}$<br>AND<br><b>M2</b> for $\frac{their 12600-9450}{their 12600}$ [ $\times$ 100] oe<br>or<br><b>M1</b> for $\frac{9450}{their 12 600}$ [ $\times$ 100] oe<br>If 0 or <b>M1</b> scored, instead award<br><b>SC2</b> for answer 25[%] with no or<br>insufficient working<br>If 0 scored, instead award<br><b>SC1</b> for 0.25 or 0.75 or 75[%] with no or<br>insufficient working | "correct working" requires at<br>least M2 or M1M1 with the<br>first M1 implied by B2<br>M0 for e.g. 70% of 18 000<br>M0 for e.g. 70% × 18 000<br>Accept 3150 for numerator<br>M2 may be seen as<br>$(1 - their \frac{9450}{their 12600})$ [× 100]<br>M1 may be seen as<br>$\frac{9450}{18000}$ = 0.525 and then<br>followed by $\frac{0.525}{0.7}$<br>Trials for second M marks<br>M2 for 12600 × 0.25 = 3150<br>or<br>M1 for 12600 × 0.75 = 9450<br>Equation method<br>B2M2 or B2M2 for<br>p/100 × 12600 = 3150<br>leading to p = 25 (scores 5<br>marks)<br>B2M1 for<br>p/100 × 12600 = 9450<br>leading to p = 75<br>B2M1 for<br>18000 x 0.7 x m = 9450<br>leading to m = 0.75, as<br>12600 implied within this |

| Question       | Answer                             | Marks      | Part marks and gu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | idance                                                                                                                                                                                                       |
|----------------|------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Question<br>10 | Answer<br>864 with correct working | Marks<br>6 | Part marks and gu<br>M1 for $\frac{12 \times 16}{2} \times 18$<br>A1 for 1728<br>or<br>M1 for $\frac{12 \times 16}{2}$                                                                                                                                                                                                                                                                                                                                                                                            | iidance<br>"correct working" requires at<br>least M1M1<br>Accept<br>e.g. 12 × 8 × 18 or 96 × 18                                                                                                              |
|                |                                    |            | AND<br>M1 for $\sqrt[3]{\text{their 1728}}$<br>A1 for 12<br>AND<br>M1 for 6 × (their 12) <sup>2</sup><br>If 0, 1 or 2 scored, instead award<br>SC3 for 864 as final answer with no<br>working or insufficient working<br>If 0 or M1 scored, instead award<br>SC2 for 12 seen as dimension of cube or<br>$(\sqrt[3]{3456})^2 \times 6$ soi 1371 to 1372<br>with no working or insufficient working<br>If 0 scored, award<br>SC1 for 1728 or $\sqrt[3]{3456}$ soi 15.1[] with<br>no working or insufficient working | Allow 12 <sup>3</sup> = 1728 for <b>M1A1</b><br>Their 1728 must be from<br>correct method for volume of<br>triangular prism<br>Their 12 must come from<br>use of volume of triangular<br>prism and cube root |

| Question | Answer                      | Marks | Part marks and guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|----------|-----------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|          | 107.95 with correct working | 6     | <b>B1</b> for 2a or a + 5 or 4a + 5 or 25.4[0] + 5x<br>seen<br><b>M1</b> for a + 2a + a + 5 = 85 or better<br>or for a trial correctly evaluated<br><b>A1</b> for [a =] 20 [hours]<br><b>AND</b><br><b>M2</b> for $\frac{25.4[0]}{their 20} \times 85$ or 1.27 × 85 oe<br>or 25.4[0] + 50.8[0] + $\frac{25.4[0]}{their 20} \times their 25$ oe<br>or 25.4[0] + 1.27 × 40 + 1.27 × 25 oe<br>or<br><b>M1</b> for $\frac{25.4[0]}{their 20}$ implied by 1.27<br>or $\frac{25.4[0]}{4}$ implied by 6.35<br>If 0 or 1 scored, instead award<br><b>SC2</b> for 107.95 with no or insufficient<br>working<br>If 0 scored, instead award<br><b>SC1</b> for 20 [hours] with no or insufficient<br>working | "correct working" requires at<br>least M1ANDM1 or M2<br>If working in pence:<br>• Allow up to 5 part marks<br>for consistent working<br>• Allow full marks if answer<br>is clearly stated as 10795<br>p[ence]<br>M1 implied by sub into<br>a + 2a + a [+ 5] with<br>evaluation<br>B1 max possible for using<br>5a instead of a + 5<br>e.g. M2 for $\frac{25.4[0]}{4} \times 17$<br>Method marks may be<br>earned in stages<br>May see equivalent algebraic<br>methods. See Appendix.<br>Non-algebraic methods may<br>earn up to full marks. |  |

| Question | Answer                           | Marks | Part marks and gu                                                                                                                                                                                                                                                                                                                                                                  | idance                                                                                                                                                                                                                                                                                                                                                 |
|----------|----------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12       | 0.3 oe nfww                      | 4     | <b>M3</b> for $0.4^2 + 0.3^2 + 0.2^2 + 0.1^2$ oe<br>or<br><b>M2</b> for $0.4^2$ oe and $0.3^2$ oe and $0.2^2$ oe and<br>$0.1^2$ oe<br>or<br><b>M1</b> for $0.4^2$ oe or $0.3^2$ oe or $0.2^2$ oe or $0.1^2$<br>oe                                                                                                                                                                  | M2 for correct method spoilt<br>e.g. $\frac{(0.4^2 + 0.3^2 + 0.2^2 + 0.1^2)}{4}$<br>Likely equivalents:<br>$0.4^2 = 0.16 \text{ or } \frac{4}{25} \text{ or } 16\%$<br>$0.3^2 = 0.09 \text{ or } \frac{9}{100} \text{ or } 9\%$<br>$0.2^2 = 0.04 \text{ or } \frac{1}{25} \text{ or } 4\%$<br>$0.1^2 = 0.01 \text{ or } \frac{1}{100} \text{ or } 1\%$ |
| 13       | 716 636 160 with correct working | 4     | <ul> <li>B1 for 90 or 9 × 10</li> <li>AND</li> <li>M2 for 24 × 24 × their 90 × 24 × 24 × 24 oe or</li> <li>M1 for 24 × 24 [×] or 24 × their 90 [×] or for 24,24,9,10,24,24,24 in any order</li> <li>If 0 or 1 scored, instead award</li> <li>SC2 for 716 636 160 with no working</li> <li>If 0 scored, instead award</li> <li>SC1 for 26 × 26 × their 90 × 26 × 26 × 26</li> </ul> | "correct working" requires at<br>least <b>M1</b><br>Allow 9 × 10 or 89 for their<br>90<br>eg <b>M1</b> for 24 × 5 × their 90<br>or for 24 × 23 × their 90 × 22<br>× 21 × 20<br>Accept list, summed, or on<br>diagram                                                                                                                                   |

| Question |     | on   | Answer                                                                                                                                                                                                                                    | Marks       | Part marks and guidance                                                                                                                                   |                                                                                                                                                                                                                       |  |
|----------|-----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 14       |     |      | -2<br>-1<br>-0<br>-90<br>-180<br>-270<br>-360<br>-450<br>-540<br>-540<br>-720<br>-720<br>-1<br>-1<br>-2<br>-2<br>-3                                                                                                                       | 3           | <b>B1</b> for general shape of cosine curve<br><b>B1</b> for max at $y = 0$ , minimum at $y = -2$<br><b>B1</b> for max at $x = 360$ , 720                 | Starting at its max and<br>completing at least one full<br>cycle; condone incorrect<br>period<br>For full marks, it must be a<br>curve and have correct<br>curvature<br>Only these two max between<br>$0 < x \le 720$ |  |
| 15       | (a) |      | 20, 44, 69, 76, 80                                                                                                                                                                                                                        | 2           | M1 for cf calculated with one arithmetic error                                                                                                            | Allow 80 or their 80 FT                                                                                                                                                                                               |  |
|          | (b) |      | Plots at right-hand end of intervals<br>Plots at correct heights<br>Join with smooth curve or straight line<br>segments                                                                                                                   | 1<br>1<br>1 | Tol $\frac{1}{2}$ square; FT if M1 in (a)<br>Tol $\frac{1}{2}$ square; FT their ascending plots only<br>Condone curve or absence of curve below<br>t = 25 | Plots of frequencies scores 0<br>across the whole of (b)<br>0 for bars at correct heights<br>since must miss off one end;<br>if cf graph as well as bars,<br>ignore bars                                              |  |
|          | (c) | (i)  | For 2 marks must say right/correct/true not<br>yes<br>Sight of 20 or 60<br>20/80 = <sup>1</sup> / <sub>4</sub> or <sup>1</sup> / <sub>4</sub> of 80 = 20<br>60/80 = <sup>3</sup> / <sub>4</sub> or <sup>3</sup> / <sub>4</sub> of 80 = 60 | 1           | Must be separate from the fraction<br>comment. Do not accept more than/less<br>than 60/20.                                                                | See Appendix<br>Accept equivalent in words                                                                                                                                                                            |  |
|          |     | (ii) | wrong/incorrect/false and correct reason                                                                                                                                                                                                  | 1           | e.g. cannot be sure as exact data not given;<br>it could be anywhere between 45 and 50<br>etc                                                             |                                                                                                                                                                                                                       |  |

| Q  | uestion | Answer                                                                                                                                                                                                                                                                                      | Marks | Part marks and guidance                                                                                                                                                                                               |                                                                                                                           |  |
|----|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|
| 16 | (a)     | E.g.<br>[y=]-(x + 3)(x - 5) AND<br>either<br>$[y = -x^{2} - 3x + 5x] + 15$ or<br>[Constant/y-intercept =] -3 x -5 = 15<br><u>Alternative method using simultaneous</u><br><u>equations</u><br>$y = -x^{2} + bx + c$<br>$0 = -(-3)^{2} - 3b + c$ and $0 = -5^{2} + 5b + c$<br>[b = 2] c = 15 | 3     | M2 for $[y=]-(x + 3)(x - 5)$<br>or<br>M1 for $k(x + 3)(x - 5)$<br>M2 for<br>$0 = -(-3)^2 - 3b + c$ and $0 = -5^2 + 5b + c$<br>or<br>M1 for $y = -x^2 + bx + c$<br>or for $0 = (-3)^2 - 3b + c$ and $0 = 5^2 + 5b + c$ | See Appendix<br>For full marks, all shown<br>parts of their expansion must<br>be correct<br>Accept k implied as 1         |  |
|    | (b)     | The equation could be a multiple<br>E.g. $[y=]-k(x+3)(x-5)$<br>So the intercept could be a multiple of 15                                                                                                                                                                                   | 2     | <b>B1</b> for<br>Giving an example in the form<br>-k(x+3)(x-5) (where k>0, k≠1, k<br>need not be an integer)<br>or<br>stating that the intercept could be a<br>multiple of 15                                         | Allow full or part marks for a fully correct algebraic example<br>E.g.<br>[y=]-2(x+3)(x-5) would have a y-intercept of 30 |  |
| 17 | (a)     | 6 is not a prime number oe                                                                                                                                                                                                                                                                  | 1     |                                                                                                                                                                                                                       |                                                                                                                           |  |
|    | (b)     | $2^{12} \times 3^5 \times 5^6$                                                                                                                                                                                                                                                              | 2     | <b>M1</b> for $[6^5 = ]2^5 \times 3^5$ seen, expanded or used or for answer including $2^{12}$ or $3^5$                                                                                                               | Correct answer in expanded<br>form implies 2 <sup>5</sup> × 3 <sup>5</sup> used for<br>M1                                 |  |
|    | (c)     | 20 000                                                                                                                                                                                                                                                                                      | 2     | <b>B1</b> for 2 <sup>5</sup> × 5 <sup>4</sup>                                                                                                                                                                         |                                                                                                                           |  |

J560/06

| Question | Answer                                                                                                                         | Marks | Part marks ar                                                                                                                                                                                          | nd guidance                                                                                                                                                                                                                                                                                                                                                            |
|----------|--------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18       | E.g.<br>Correct inequalities shown on diagram,<br>correct region R identified and correct<br>area calculation ½ × 6 × 4 [= 12] | 6     | <b>B1</b> for line y = 5<br><b>B1</b> for line x + y = 13<br>AND                                                                                                                                       | Condone good freehand<br>lines, which can be dashed<br>or solid.<br>Lines need only be one<br>square long for line mark but<br>they must be fit for purpose<br>to define their region<br>Mark the region which is<br>labelled, but if no labelling<br>mark the single region which<br>is shaded (or unshaded) or<br>implied by area calculation of<br>correct region R |
|          |                                                                                                                                |       | <b>B1</b> for correct side of $y = 2x + 1$<br><b>B1</b> for correct side of $y = 5$<br><b>B1</b> for correct side of $x + y = 13$<br>AND<br><b>M1dep</b> for $\frac{1}{2} \times 6 \times 4$ [= 12] oe | Use diagram for these three<br>marks<br>If extra lines, mark those<br>bounding R. If no R, mark<br>poorest two<br>Dep on region R being<br>correct<br>Accept counting squares but<br>check areas bounding<br>y = 2x + 1<br>Accept split into two triangles<br>4 and 8 oe                                                                                               |

| Q  | uesti | on | Answer                                                                  | Marks | Part marks and gu                                                                                                                                                                   | idance                                                                                                                                                                                                                   |
|----|-------|----|-------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19 | (a)   |    | $(x - 4)^2 - 7$ final answer                                            | 3     | <b>B1</b> for $(x - 4)^2$<br>AND<br><b>B2FT</b> for - 7<br>or<br><b>M1</b> for 9 - (their $^-4)^2$ oe shown<br>If 0 or 1 scored, allow<br><b>SC2</b> for final answer $(x - 4) - 7$ | No FT from (x – 3) <sup>2</sup><br>FT can be implied, check<br>9 – (their <sup>-</sup> 4) <sup>2</sup>                                                                                                                   |
|    | (b)   |    | $4 + \sqrt{7}$ $4 - \sqrt{7}$ final answer with working from <b>(a)</b> | 2FT   | <b>M1</b> for their $(x - 4)^2$ = their 7<br>FT from their (a) for solutions in exact form<br>if working shown                                                                      | Answers only score 0<br>Do not FT where $b = 0$<br>e.g. $(x - 4)^2$<br>If their b is a perfect square,<br>allow FT for $a + \sqrt{b}$ and<br>$a - \sqrt{b}$ or simplified as two<br>integers<br>If $b < 0$ , a max of M1 |

| Question | Answer                   | Marks | Part marks and gu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lidance                                                                                                                                        |
|----------|--------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 20       | 125 with correct working | 4     | M3 for $[8 \times] \left(\sqrt{\frac{75}{12}}\right)^3$ or 2.5 <sup>3</sup> oe<br>or<br>M2 for $\sqrt{\frac{75}{12}}$ or $\sqrt{6.25}$ oe implied by 2.5 or<br>5/2<br>or<br>M1 for $\frac{75}{12}$ oe implied by 6.25<br><u>Alternative method:</u><br>M3 for $[8 \div] \left(\sqrt{\frac{12}{75}}\right)^3$ or 0.4 <sup>3</sup> oe<br>or<br>M2 for $\sqrt{\frac{12}{75}}$ or $\sqrt{0.16}$ oe implied by 0.4 or<br>2/5<br>or<br>M1 for $\frac{12}{75}$ oe implied by 0.16<br>If 0 scored, instead award<br>SC1 for answer 125 with no or insufficient<br>working | "correct working" requires<br>evidence of at least M2<br>Accept ratios<br>M3 for 8 : 125 oe<br>or<br>M2 for 2 : 5 oe<br>or<br>M1 for 4 : 25 oe |

| 21 | 2.8 to 2.81 with correct working | 6 |                                                                                                           | All methods: "correct<br>working" requires at least<br>M1ANDM1ANDM1                                                                               |
|----|----------------------------------|---|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                  |   | First M1 may be on diagram or within other M marks                                                        | First M1 may be on diagram or within other M marks                                                                                                |
|    |                                  |   | <b>M1</b> for BAC = 180 – (32 + 43) or 58 + 47 or 105                                                     | <b>M1</b> for BAC = 180 – (32 + 43)<br>or 58 + 47 or 105                                                                                          |
|    |                                  |   | AND                                                                                                       | AND                                                                                                                                               |
|    |                                  |   | <b>M2</b> for AC = $\frac{7.5 \times sin 32}{sin (their \ 105)}$                                          | <b>M2</b> for AB = $\frac{7.5 \times sin43}{sin (their 105)}$                                                                                     |
|    |                                  |   | or<br>M1 for $\frac{AC}{sin32} = \frac{7.5}{\sin(their\ 105)}$ oe                                         | or<br>M1 $\frac{AB}{sin43} = \frac{7.5}{\sin(their\ 105)}$ oe                                                                                     |
|    |                                  |   | AND                                                                                                       | AND                                                                                                                                               |
|    |                                  |   | <b>A1</b> for AC = 4.11[4…] or 4.115<br>(M1A1 implies M2A1)                                               | A1 for AB = 5.29[5…] or<br>5.3[0]<br>(M1A1 implies M2A1)                                                                                          |
|    |                                  |   | AND                                                                                                       | AND                                                                                                                                               |
|    |                                  |   | M1 for $\frac{AX}{their 4.11}$ = sin43<br>or their 4.11 × sin 43 oe<br>If 0, 1 or 2 scored, instead award | <b>M1</b> for $\frac{AX}{their5.3[0]} = sin32$<br>or their 5.3[0] × sin 32 oe<br>If 0, 1 or 2 scored, instead<br>award <b>SC3</b> for 2.8 to 2.81 |
|    |                                  |   | <b>SC3</b> for 2.8 to 2.81 with no or insufficient working.                                               | with no or insufficient working.                                                                                                                  |
|    |                                  |   | If 0 or 1 scored, instead award <b>SC2</b> for 4.11[4], 4.115 with no or insufficient working.            | If 0 or 1 scored, instead<br>award <b>SC2</b> for 5.29[5] or<br>5.3[0] with no or insufficient<br>working.                                        |

| J560/0 | 6 |
|--------|---|
|--------|---|

|  | Alternative Method splitting BC:<br>First M1 may be on diagram or within<br>other M marks. Accept other terms for d.<br>Do not accept numerical partition of BC.                       | First M1 may be on diagram<br>or within other M marks.<br>Accept other terms for d. Do<br>not accept numerical<br>partition of BC.          |
|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
|  | <b>M1</b> for $BX = d$ and $XC = 7.5 - d$                                                                                                                                              | <b>M1</b> BX = 7.5 – d and XC = d                                                                                                           |
|  | AND                                                                                                                                                                                    | AND                                                                                                                                         |
|  | <b>M2</b> for d = $\frac{7.5tan43}{tan32+tan43}$ oe<br>or<br><b>M1</b> for dtan32 = (7.5 - d)tan 43 oe                                                                                 | <b>M2</b> for d = $\frac{7.5tan32}{tan43+tan32}$ oe<br>or <b>M1</b> for<br>dtan43 = (7.5 - d)tan 32 oe                                      |
|  | AND                                                                                                                                                                                    | AND                                                                                                                                         |
|  | <b>A1</b> for d =4.49 to 4.5 (M1A1 implies M2A1)                                                                                                                                       | <b>A1</b> for d = 3 to 3.01<br>(M1A1 implies M2A1)                                                                                          |
|  | AND                                                                                                                                                                                    | AND                                                                                                                                         |
|  | M1 for $\frac{AX}{their 4.49}$ = tan32<br>or their 4.49 × tan32<br>or for $\frac{AX}{(7.5-their 4.49)}$ = tan43<br>or (7.5 – their 4.49) × tan43<br>If 0, 1 or 2 scored, instead award | M1 for $\frac{AX}{their 3.01}$ = tan43<br>or their 3.01× tan43<br>or $\frac{AX}{(7.5-their 3.01)}$ = tan32 or<br>(7.5 – their 3.01) × tan32 |
|  | <ul> <li>SC3 for 2.8 to 2.81 with no or insufficient working.</li> <li>If 0 or 1 scored, instead award</li> <li>SC2 for 4.49[] or 4.5[0] with no or insufficient working.</li> </ul>   | If 0, 1 or 2 scored, instead<br>award<br><b>SC3</b> for 2.8 to 2.81 with no<br>or insufficient working.<br>If 0 or 1 scored, instead        |
|  | Alternative Method using Areas<br>The main scheme still applies. The first<br>four marks will be identical and the area                                                                | award<br><b>SC2</b> for 4.49[] or 4.5[0]<br>with no or insufficient<br>working.                                                             |

| Qı | uestion | Answer | Marks | Part marks and guid                                                                               | dance |
|----|---------|--------|-------|---------------------------------------------------------------------------------------------------|-------|
|    |         |        |       | method eventually simplifies to the final M1 expression. This is just a much more complex method. |       |

#### APPENDIX

Non Calculator methods for percentages.

| Labels only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                            |                 |                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------|-----------------|--------------------------------------|
| This is when labels such as 10% = are used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | If only labels are use                 | ed the final answer scores fu              | full marks      | if it is correct.                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Condone a numerica                     | al slip if the answer is correc            | ect.            |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | If there is an error in                | the values and so the final                | l answer is     | s incorrect this cannot score method |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | marks                                  |                                            |                 |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e.g. Find 65% of 80                    |                                            |                 |                                      |
| Method scoring M1A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                            |                 |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10% = 8                                | 109                                        | % = 8           |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5% = 4                                 | 5%                                         | 6 = 5           | condone this slip as answer correct  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50% = 40                               | 50%                                        | % = 40          | ·                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 65% = 52 ✔ M1A1                        | 65%                                        | % = 52 <i>×</i> | Ś M1A1                               |
| Method scoring M0A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                            |                 |                                      |
| <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10% = 8                                |                                            |                 |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5% = 6 <b>≭</b>                        | Do not condone this slip a                 | as answe        | r incorrect                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50% = 40                               |                                            |                 |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 65% = 54 ¥ MO                          |                                            |                 |                                      |
| Build up method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                                            |                 |                                      |
| $\frac{1}{2} = \frac{1}{2} = \frac{1}$ | a factor de la companya de la companya | land the land have been all and the second |                 |                                      |

This is where the candidate finds the percentages to build up to the required value but shows the operations used.

e.g. Find 65% of 80  $10\% = 80 \div 10 = x$   $5\% = x \div 2 = y$   $50\% = x \times 5 = z$  65% = x + z + yBecause the operations have been shown and they are correct, if there is an error in one of x, y or z, method marks can still be earned <u>8c</u>

| Reason                                                      | Judgement                                               | Mark |
|-------------------------------------------------------------|---------------------------------------------------------|------|
| It would increase to 2000                                   | Correct                                                 | 1    |
| then stay at 2000                                           | Correct                                                 | 1    |
| Once it reaches 2000 it will plateau                        | Reaches 2000 implies increasing                         | 1    |
|                                                             | It will plateau is fine                                 | 1    |
| It would increase to approx. 2000                           | approx. is okay. 2000 referenced at least once.         | 1    |
| and then remain more or less constant around this value.    |                                                         | 1    |
| Keep increasing as 2000 is a little way up the scale.       | Increase is fine                                        | 1    |
|                                                             |                                                         | 0    |
| It will increase and continue past the maximum              | Award for "It will increase"                            | 1    |
| Then it will fall as fish will die                          | Doesn't say the line will level off                     | 0    |
| After the 5th year the graph would be capped at 2000,       | Implies increase in graph BOD                           | 1    |
| only allowing 55 more fish in the lake.                     | The description is for what is happening in the         | 0    |
|                                                             | lake and not the shape of the graph                     |      |
| The line continues up                                       | Continues <b>up</b> is enough but without the up,       | 1    |
| •                                                           | would not get the mark                                  |      |
| and then falls                                              | Falls is incorrect                                      | 0    |
| It would cause it to slow down in the rate of increase      | Describes increase                                      | 1    |
| and would then cause it to plateau.                         | True. No mention of 2000. Max 1 mark                    | 0    |
| The line of best fit would hit a peak.                      | Not awarded as the peak could be at the end of          | 0    |
|                                                             | the line so "up" not implied.                           |      |
|                                                             | No mention of increase (to 2000)                        | 0    |
| It would eventually plateau and level out with no increase. |                                                         | 1    |
| The line will continue to 2000                              | Correct as "the line continues" and max/2000            | 1    |
|                                                             | imply going up                                          |      |
| Then it will go along the x-axis                            | Incorrect as it is parallel to the x-axis, not along it | 0    |
| t starts to decreasethen not go past 2000                   | Incorrect should be increase                            | 0    |
| Once at 2000 it will stay around the same place             | Staying around the same place BOD for value             | 1    |
| After 4 years the shape would no longer increase.           | Incorrect.                                              | 0    |
| t'll stay at 2000 with a horizontal line on 2000.           | Correct                                                 | 1    |
|                                                             | No mention of graph increasing                          | 0    |
| It would plateau/level off at 2000 fish                     | 2000 then staying there.                                | 1    |
| I                                                           |                                                         | 0    |
| It would become a horizontal straight line                  |                                                         | 1    |

|                                                                                    | No mention of increase                            | 0 |
|------------------------------------------------------------------------------------|---------------------------------------------------|---|
| The graph would plateau as no fish are being added or taken away                   | Correct for plateau                               | 1 |
| 4 years almost 2000 fish(1995) so the graph would plateau as no more fish can live | No increase                                       | 0 |
| in the pool                                                                        | Plateau                                           | 1 |
| It would not increase.                                                             | Wrong (but It would not increase past 2000        | 0 |
|                                                                                    | implies curve increasing for 1 mark)              |   |
| The line of best fit would level off and perhaps sometimes slightly decrease.      | Level off okay, condone the rest as not           | 1 |
|                                                                                    | contradicting                                     |   |
| It will exceed the maximum amount of fish                                          | Describing what is going on in the lake not the   | 0 |
|                                                                                    | shape of the graph                                | 0 |
| Would start plateauing downward                                                    | No mention of increase (or 2000)                  | 0 |
| becoming more and more flat as less fish were present year by year.                | Spoilt for second mark as suggests going down     | 0 |
|                                                                                    | so is contradictory                               |   |
| The graph curves as the max capacity is exceeded                                   | Ruled out as a possible interpretation is that it | 0 |
|                                                                                    | has already reached maximum and it then curves    |   |
|                                                                                    | in some direction                                 |   |

#### Q11

There are possibly many algebraic methods for this question. Examiners should use the main scheme as a template, matching steps or positions in the solution as best as possible. If in doubt, contact your Team Leader. For example:

| (tips): Amir : Beth : Charlie are 25.4 : 50.8: 25.4 + 5x (where x is hourly rate of tips) | This is on the scheme at B1                     | B1 |
|-------------------------------------------------------------------------------------------|-------------------------------------------------|----|
| (total tips): $25.4 + 50.8 + 25.4 + 5x = 85x$                                             | There is an equation on the scheme, so M1       | M1 |
|                                                                                           | would be a good judgement                       |    |
| (solving): $x = 1.27$                                                                     | And then this would be the A1                   | A1 |
| (substitution into either side of the equation) eg $85 \times 1.27$                       | This is on the scheme at M2                     | M2 |
| (final answer) 107.95                                                                     | The answer is correct and the candidate has     |    |
|                                                                                           | satisfied the "correct working" requirement and |    |
|                                                                                           | so is awarded full marks                        |    |

Q15c(i)

| Reason                                                                                                    | Judgement                                                      | Mark     |
|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------|
| Correct, <sup>3</sup> / <sub>4</sub> of 80 is 60 and 20 cyclists completed within 30 minutes, leaving the |                                                                | 1        |
| remaining <sup>3</sup> / <sub>4</sub> of cyclists taking over 30 minutes                                  |                                                                | <u> </u> |
| True, $\frac{3}{4}$ of 80 = 60 and 60 cyclists took more than 30 minutes                                  |                                                                | 1        |
| Right, 20 cyclists completed the race in under 30 minutes and $20/80 = \frac{1}{4}$ .                     |                                                                | 1        |
| Right, 60 cyclists took more than 30 minutes and $\frac{3}{4}$ of 80 = 60.                                |                                                                | 1        |
| Wrong, 60 cyclists took more than 30 minutes and $\frac{3}{4}$ of 80 = 60.                                | Despite "wrong", mark the comments but do not award full marks | 1        |
| Yes, 60 cyclists took more than 30 minutes and $\frac{3}{4}$ of 80 = 60.                                  | Do not award 2 marks with "yes"                                | 1        |
| Correct, if you add the amount of times after 30 you get 60 and there's 80 cyclists.                      |                                                                | 1        |
| Right, 60 cyclists took more than 30 minutes.                                                             |                                                                | 1        |
| Wrong, 60 cyclists took more than 30 minutes.                                                             | Despite "wrong", mark the comment                              | 1        |
| True, the lower quartile is at 30mins                                                                     | Implies 20                                                     | 1        |
| <sup>3</sup> ⁄ <sub>4</sub> of 80 = 60                                                                    |                                                                | 0        |

Q15c(ii)

| Reason                                                              | Judgement         | Mark |
|---------------------------------------------------------------------|-------------------|------|
| Wrong, all we know is that it is between 45 and 50                  | Condone 46 and 50 | 1    |
| Wrong, there is a range of values for the time so not definitely 50 |                   | 1    |
| Wrong, as the time is given as a range                              |                   | 1    |
| Wrong, we are not given the accurate values                         |                   | 1    |
| Wrong, it might be but we need to know the exact values to find out |                   | 1    |
| Wrong, they may have all been less than 50                          | all               | 1    |
| Wrong, some cyclists may have taken 49.5 minutes                    | some              | 0    |
| Wrong, we need more data                                            | Ambiguous         | 0    |
| Right, 50 is the highest value                                      |                   | 0    |
| Right [with any comment]                                            |                   | 0    |

#### "<mark>x</mark> Q16a

| $(x + 3)(x - 5) = x^2 - 2x - 15$                                                                                           | The response doesn't quite fit the scheme but is thought worthy of full marks<br>This line on its own scores M1                                      |
|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| But the quadratic is upside down so it will be $-x^2 + 2x + 15$<br>[there then was an arrow from the +15 to the intercept] | But this line makes it equivalent to the M2 and it<br>also a correct expansion with + 15<br>The linking of +15 to the intercept is an added<br>bonus |

#### <u>Q17a</u>

| Reason                    | Judgement | Mark |
|---------------------------|-----------|------|
| 6 is not a prime number   |           | 1    |
| 6 is not a prime factor   |           | 1    |
| 6 can be written as 2 x 3 |           | 1    |
| 6 is not allowed          |           | 0    |

#### Need to get in touch?

If you ever have any questions about OCR qualifications or services (including administration, logistics and teaching) please feel free to get in touch with our customer support centre.

Call us on

01223 553998

Alternatively, you can email us on

support@ocr.org.uk

For more information visit





Twitter/ocrexams

/ocrexams

/company/ocr

/ocrexams



OCR is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored. © OCR 2022 Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee. Registered in England. Registered office The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA.

Registered company number 3484466. OCR is an exempt charity.

OCR operates academic and vocational qualifications regulated by Ofqual, Qualifications Wales and CCEA as listed in their qualifications registers including A Levels, GCSEs, Cambridge Technicals and Cambridge Nationals.

OCR provides resources to help you deliver our qualifications. These resources do not represent any particular teaching method we expect you to use. We update our resources regularly and aim to make sure content is accurate but please check the OCR website so that you have the most up-to-date version. OCR cannot be held responsible for any errors or omissions in these resources.

Though we make every effort to check our resources, there may be contradictions between published support and the specification, so it is important that you always use information in the latest specification. We indicate any specification changes within the document itself, change the version number and provide a summary of the changes. If you do notice a discrepancy between the specification and a resource, please <u>contact us</u>.

Whether you already offer OCR qualifications, are new to OCR or are thinking about switching, you can request more information using our Expression of Interest form.

Please get in touch if you want to discuss the accessibility of resources we offer to support you in delivering our qualifications.