4722 Core Mathematics 2

1	$(2-3x)^6 = 2^6 + 6.2^5 \cdot (-3x) + 15.2^4 \cdot (-3x)^2$ $)3x$	M1	Attempt (at least) first two terms - product of binomial coefficient and powers of 2 and (-
	$= 64 - 576x + 2160x^2$	A1	Obtain 64 – 576 <i>x</i>
		M1	Attempt third term - binomial coefficient and powers of 2 and $(-)3x$
		A1	Obtain $2160x^2$
	OR	3.54	
		M1	Attempt expansion involving all 6 brackets
		A1	Obtain 64
		A1	Obtain $-576x$
		A1	Obtain $2160x^2$

SR if the expansion is attempted in descending order, and the required terms are never seen, then **B1 B1 B1** for $4860x^4$, $-2916x^5$, $729x^6$

		$4860x^4$, $-2916x^5$, $729x^6$	4	
2	(i)	$u_2 = \frac{2}{3}$	B1	Obtain correct u_2
		$u_3 = {}^{-1}/_2$		B1 $$ Obtain correct u_3 from their u_2
		$u_4 = 3$	B1√ 3	Obtain correct u_4 from their u_3
	(ii)	sequence is periodic / cyclic / repeating	B1 1	Any equivalent comment
3	(i)	$\frac{1}{2} \times 8^2 \times \theta = 48$	M1	State or imply $(\frac{1}{2})$ $8^2\theta = 48$
	()	Hence $\theta = 1.5$ radians	A1 2	Obtain $\theta = 1.5$ (or 0.477π), or equiv
	(ii)	area = $48 - \frac{1}{2} \times 8^2 \times \sin 1.5$	M1*	Attempt area of Δ using (½) $8^2 \sin \theta$
		=48-31.9	M1d*	Attempt 48 – area of Δ
		= 16.1	<u>A1</u>	Obtain 16.1 cm ²
			3	
4	(i)	f(3) = 27a - 36 - 21a + 12 = 0	M1*	Attempt f(3)
		6a = 24	M1d*	Equate attempt at $f(3)$ to 0 and attempt to solve
		a = 4	A1	Obtain $a = 4$
	OR			
			M1*	Attempt complete division / matching coeffs
				Equate remainder to 0
			A1 3	Obtain $a = 4$
	(ii)	f(-2) = -32 - 16 + 56 + 12	M1	Attempt f(-2)
		= 20	<u>A1</u> √	Obtain 20 (or $6a - 4$, following their a)
			2	

	<u> </u>		
5 (i)	$\int x \mathrm{d}y = \int ((y-3)^2 - 2) \mathrm{d}y$	B 1	Show $x = y^2 - 6y + 7$ convincingly
	$=\int (y^2 - 6y + 7) dy$ A.G.	B1	State or imply that required area = $\int x dy$
	$3 + \sqrt{(2+2)} = 5$, $3 + \sqrt{(14+2)} = 7$	B 1	Use $x = 2$, 14 to show new limits of $y = 5$, 7
		3	
(ii)	$\left[\frac{1}{3}y^3 - 3y^2 + 7y\right]_5^7$	M1	Integration attempt, with at least one
term	$=(^{343}/_3-147+49)-(^{125}/_3-75+35)$		correct
	(73-147+47)-(73-73+33)	A1	All three terms correct
	$=16^{1}/_{3}-1^{2}/_{3}$	M1	Attempt $F(7) - F(5)$
	$=14^{2}/_{3}$	A1 4	Obtain $14^{\frac{2}{3}}$, or exact equiv
6 (i)	$ABC = 360 - (150 + 110) = 100^{\circ}$ A.G.	B1	Show convincingly that angle ABC is 100°
(ii)	$CA^2 = 15^2 + 27^2 - 2 \times 15 \times 27 \times \cos 100^0$	M1	Attempt use of correct cosine rule
	= 1094.655 $CA = 33.1$	A1 2	Obtain 33.1 km
(iii)	$\frac{\sin C}{15} = \frac{\sin 100}{33.1}$ or $\frac{\sin A}{27} = \frac{\sin 100}{33.1}$	M1	Attempt use of sine rule to find angle C or A
	$C = 26.5^{\circ}$ $A = 53.5^{\circ}$	A1√ A1	(or equiv using cosine rule) Correct unsimplified eqn, following their C Obtain $C = 26.5^{\circ}$ or $A = 53.5^{\circ}$ (allow 53.4°)
	Hence bearing is 263°	A1 √	Obtain 263 or 264 (or 290° – their angle C
		4	210 + their angle A)
7 (a)	$\int (x^5 - x^4 + 5x^3) \mathrm{d}x$	M1	Expand brackets and attempt integration, or
	•		other valid integration attempt
	$= \frac{1}{6}x^6 - \frac{1}{5}x^5 + \frac{5}{4}x^4 \ (+c)$	A1	Obtain at least one correct term
		A1	Obtain a fully correct expression
		B 1	For $+ c$, and no \int or dx (can be given in
		4	(b)(i) if not given here)
(b)	(i) $-6x^{-3}$ (+c)	M1	Obtain integral of the form kx^{-3}
		A1 2	Obtain $-6x^{-3}$ (+c)
	(ii) $\left[-6x^{-3}\right]_{2}^{\infty}$	B1*	State or imply that $F(\infty) = 0$ (for kx^n, n -1)
	$= \frac{3}{4}$	B1d*	Obtain ¾ (or equiv)

8	(i)	A ,	M1	Attempt sketch of exponential graph (1st quad)
				- if seen in 2 nd quad must be approx correct
			A1	Correct graph in both quadrants
			B1	State or imply $(0, 2)$ only
			3	
	(ii)	$8^x = 2 \times 3^x$		
		$\log_2 8^x = \log_2 (2 \times 3^x)$	M1	Form equation in x and take logs (to any
		1 0 1 2 1 2	3.51	consistent base, or no base) – could use log 8
		$x\log_2 8 = \log_2 2 + x\log_2 3$	M1	Use $\log a^b = b \log a$
		2 - 1 + 1 - 2	M1	Use $\log ab = \log a + \log b$, or equiv with $\log^a a/b$
		$3x = 1 + x\log_2 3$	M1	Use $\log_2 8 = 3$
		$x(3 - \log_2 3) = 1$, hence $x = \frac{1}{3 - \log_2 3}$ A.G.	A1	Show given answer correctly
	ΩĐ	- 2		
	OK	$8^x = 2 \times 3^x$		
		$2^{3x} = 2 \times 3^x$	M1	Use $8^x = 2^{3x}$
		$2^{(3x-1)} = 3^x$	M1 M1	_
		$\log_2 2^{(3x-1)} = \log_2 3^x$	M1	Attempt to rearrange equation to $2^k = 3^x$ Take logs (to any base)
		$(3x-1)\log_2 2 = x \log_2 3$	M1	Use $\log a^b = b \log a$
		$(3x - 1)\log_2 2 - x \log_2 3$		
		$x (3 - \log_2 3) = 1$, hence $x = \frac{1}{3 - \log_2 3}$ A.G.	A1	Show given answer correctly
		$3 \log_2 3$	5	
			_ 3	
_				
9	(a) ((i) $2\sin x \cdot \frac{\sin x}{\cos x} - 5 = \cos x$	M1	Use $\tan x = \frac{\sin x}{\cos x}$
		$2\sin^2 x - 5\cos x = \cos^2 x$		
		$2 - 2\cos^2 x - 5\cos x = \cos^2 x$	M1	Use $\sin^2 x = 1 - \cos^2 x$
		$3\cos^2 x + 5\cos x - 2 = 0$	A1	Show given equation convincingly
			3	
	(ii)	$(3\cos x - 1)(\cos x + 2) = 0$	M1	Attempt to solve quadratic in cosx
	` '	$\cos x = \frac{1}{3}$	M1	Attempt to find x from root(s) of quadratic
		x = 1.23 rad	A1	Obtain 1.23 rad or 70.5°
		x = 5.05 rad	$\mathbf{A1}$	Obtain 5.05 rad or 289° (or $2\pi / 360^{\circ}$ - their
				solution)
				SR: B1 B1 for answer(s) only
			4	
	(b)	$0.5x0.25x\{\cos 0+2(\cos 0.25+\cos 0.5+\cos 0.75)+\cos 1\}$	M1	Attempt <i>y</i> -coords for at least 4 of the correct 5
				x-coords
			M1	Use correct trapezium rule, any h , for their y
				values to find area between $x = 0$ and $x = 1$
			M1	Correct h (soi) for their y values
		≈ 0.837	<u>A1</u>	Obtain 0.837
			4	

10 (i)	$u_{15} = 2 + 14 \times 0.5$	M1	Attempt use of $a + (n-1)d$
	= 9 km	A1 2	Obtain 9 km
(ii)	$u_{20} = 2 \times 1.1^{19} = 12.2$	B1	State, or imply, $r = 1.1$
. ,		M1	Attempt u_{20} , using ar^{n-1}
	$u_{19} = 2 \times 1.1^{18} = 11.1$	A1	Obtain $u_{20} = 12.2$, and obtain $u_{19} = 11.1$
OR			
		B 1	State, or imply, $r = 1.1$
		M1	Attempt to solve $ar^{n-1} = 12$
		A1 3	Obtain $n = 20$ (allow $n \ge 20$)
(iii)	$\frac{2(1.1^n - 1)}{(1.1 - 1)} > 200$	B1	State or imply $S_N = \frac{2(1.1^n - 1)}{(1.1 - 1)}$
	$1.1^n > 11$	M1	Link (any sign) their attempt at S_N (of a GP) to 200 and attempt to solve
	$n > \frac{\log 11}{\log 1.1}$	A1	Obtain 26, or 25.2 or better
	n > 25.2 ie Day 26	A1 4	Conclude $n = 26$ only, or equiv eg Day 26
(iv)	swum = $2 \times 30 = 60 \text{ km}$	B1	Obtain 60 km, or 2 x 30km
()	$run = \frac{1}{2} \times 30 \times (4 + 29 \times 0.5)$	M1	Attempt sum of AP, $d = 0.5$, $a = 2$, $n = 30$
	= 277.5 km cycle = $\frac{2(1.1^{30} - 1)}{(1.1 + 1)^{30}}$	M1	Attempt sum of GP, $r = 1.1$, $a = 2$, $n = 30$
	(1.1-1) = 329.0 km total = 666 km	A1 4	Obtain 666 or 667 km