Question Number	Scheme		Marks	
1. (<i>a</i>)	A statistical process devised to describe or make predictions about the expected behaviour of a real-world problem.	B1 B1	(2)	
(<i>b</i>) (i)	The number showing on the uppermost side of a die after it has been rolled.	B1		
(ii)	The height of adult males.	B1 ((2)	
		(4 mar	ks)	
2.	f(z) $f(z)$	B1		
	$\therefore P\left(Z > \frac{55 - \mu}{\sigma}\right) = 0.05$ 1.6449 Standardising	M1		
	$\Rightarrow \frac{55 - \mu}{\sigma} = 1.6449$ Completely correct $P(T < 10) = 0.001$	A1		
	$\therefore P\left(Z < \frac{10 - \mu}{\sigma}\right) = 0.001$ $\Rightarrow \frac{10 - \mu}{\sigma} = -3.0902$ Completely correct	B1 M1 A1		
	$\therefore 55 - \mu = 1.6449\sigma$			
	$10 - \mu = -3.0902\sigma$ Attempt to solve	M1		
	$\therefore \mu = 39.368$ $\mu = 39.4$			
	$\sigma = 9.5035 \qquad \qquad \sigma = 9.50$	A1 ((9 mark	(9) ks)	

~	estion nber	Scheme		Marks	
3.	(<i>a</i>)	k(1+2+3+4+5) = 1	Use of $\sum P(X = x) = 1$	M1 A1	
		$\Rightarrow k = \frac{1}{\underline{15}} *$		A1	(3)
	(<i>b</i>)	$E(X) = \frac{1}{15} \{ 1 + 2 \times 2 + \dots + 5 \times 5 \}$	Use of E (X) = $\sum x P(X = x)$	M1 A1	
		= 15		A1	
		$\therefore E(2X+3) = 2E(X)+3$		M1	
		$=\frac{31}{3}$		A1 ft	(5)
	(<i>c</i>)	$E(X^{2}) = \frac{1}{15} \{1 + 2^{2} \times 2 + \dots + 5^{2} \times 5\}$	Use of $E(X^2) = \sum x^2 P(X = x)$	M1	
		= 15		A1	
		= 15 = 15 Var (X) = 15 - $\left(\frac{11}{3}\right)^2$ Use	of Var $(X) = E(X^2) - [E(X)]^2$	M1	
		$=\frac{14}{9}$		A1	
		Var(2X-4) = 4 Var(X)	Use of $Var(aX) = a^2 Var(X)$	M1	
		$=\frac{56}{9}$		A1 ft	(6)
				(14 ma	arks)

Question Number	Scheme		Marks
4. (<i>a</i>)	$b = \frac{15 \times 484 - 143 \times 391}{15 \times 2413 - (143)^2}$		M1 A1
	= - 3.0899	AWRT -3.09	A1
	$a = \frac{391}{15} - \left(-3.0899\right) \left(\frac{143}{15}\right)$		M1 A1
	= 55.5237	AWRT 55.5	A1
	$\therefore y = 55.52 - 3.09x$		B1 ft
	$\therefore h - 100 = 55.52 - 3.09(s - 20)$		M1 A1 ft
	$\therefore h = 217.32 - 3.09s$	AWRT 217; 3.09	A1 (10)
(b)	For every extra revolution/minute the life of the drill is reduced by 3 hours.		B1 B1 (2)
(c)	$s = 30 \Longrightarrow h = 124.6$	AWRT 125	M1 A1 ft (2)
			(14 marks)

	estion mber		
5.	(<i>a</i>)	Advantages: Uses central 50% of the data	
		Not affected by extreme values (outliers)	
	Provide an alternative measure of spread to the variance/standard deviation, i.e. IQR/STQR		
		Disadvantages: Not always a simple calculation, e.g. interpolation for a grouped frequency distribution	
		Different measures of calculation – no single argued method	
		Does not use all the data directly	
		Any 4 sensible comments – at least one advantage and one disadvantage	B1 B1 B1 B1 (4)
	<i>(b)</i>	Indicates maximum/minimum observations and possible outliers	
		Indicates relative positions of the quartiles	
		Indicates skewness	
		When plotted on the same scale enables comparisons of distributions	
		Any 4 sensible comments	B1 B1 B1 (3)
(<i>c</i>)		$Q_1 - 1.5(Q_3 - Q_1) = -4 \Rightarrow$ no outlier below lower quartile	
	$Q_2 + 1.5(Q_3 - Q_1) = 52 \Rightarrow$ an outlier (55) above upper quartile		B1
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
		Distance in kilometres	
		Distance in knometres	
		Same scale and label	B1
		Q ₁ , Q ₂ , Q ₃ , 3, 52	B1
		55	B1 (3)
		continued over	

~	estion mber	Scheme	Marks
5.	(<i>d</i>)	A: $Q_3 - Q_2 = 10$; $Q_2 - Q_1 = 10 \Rightarrow$ symmetrical B: $Q_3 - Q_2 = 7$; $Q_2 - Q_1 = 7 \Rightarrow$ symmetrical Median B (24) > Median A (22) \Rightarrow on average teachers in B travel slightly further to school than those in A Range of B is greater than that of A 25% of teachers in A travel 12 km or less compared with 25% of teachers in B who travel 17 km or less	
		50% of teachers in A travel between 12 km and 32 km as compared with 17 km and 31 km for B Any 4 sensible comments	B1 B1 B1 B1 (4) (16 marks)

Question Number	Scheme	Marks
6.	$P(H \cap W) = P(H W)P(W)$	M1
(a)	$=\frac{11}{12} \times \frac{1}{2} = \frac{11}{\underline{24}} *$	A1 (2)
(b)	$\begin{array}{c c} H \\ \hline \\ 17 \\ 11 \\ 1 \\ \end{array} \\ \end{array} \\ \begin{array}{c} W \\ H \cap W' \\ \end{array} \\ \begin{array}{c} \text{Diagram} \\ H \cap W' \\ \end{array} \\ \end{array}$	M1 M1 A1
	$\left(\begin{array}{ccc} \frac{17}{120} & \left(\frac{11}{24}\right) & \frac{1}{24} \end{array}\right)_{43} \qquad \qquad$	A1
	$\frac{43}{120} \qquad \qquad H \cap W$	B1 (5)
(<i>c</i>)	P (only one has a degree) = $\frac{17}{120} + \frac{1}{24} = \frac{11}{60}$	M1 A1 (2)
(d)	P (neither has a degree) = $1 - \left\{ \frac{17}{120} + \frac{11}{24} + \frac{1}{24} \right\}$	M1 A1
	$=\frac{43}{\underline{120}}$	A1 (3)
(e)	Possibilities Any one -(HW')(H'W);(H'W)(HW');(HW)(H'W');(H'W')(HW)	B1
	All correct	B1
	$\therefore P \text{ (only 1 H or 1 W)} = \left(2 \times \frac{17}{120} \times \frac{1}{24}\right) + \left(2 \times \frac{11}{24} \times \frac{43}{120}\right) \qquad 2 \times \frac{17}{120} \times \frac{1}{24}$	B1 ft
	$=\frac{49}{\underline{144}} \qquad \qquad 2\times\frac{11}{\underline{24}}\times\frac{43}{\underline{120}}$	B1 ft
	Adding their probabilities	M1
	$\frac{49}{144}$	A1 (6)
		(18 marks)