F ## Friday 13 November 2020 - Morning # GCSE (9–1) Physics B (Twenty First Century Science) J259/01 Breadth in physics (Foundation Tier) Time allowed: 1 hour 45 minutes #### You must have: - · a ru er (cm/mm) - the Data Sheet for GCSE (9–1) Phys cs B (ns de th s document) #### You can use: - · a sc ent f c or graph ca ca cu ator - an HB penc | Please write cle | arly in | black | k ink. | Do no | ot writ | e in the barcodes. | | | |------------------|---------|-------|--------|-------|---------|--------------------|--|--| | Centre number | | | | | | Candidate number | | | | First name(s) | | | | | | | | | | Last name | | | | | | | | | #### INSTRUCTIONS - Use black ink. You can use an HB pencil, but only for graphs and diagrams. - Write your answer to each question in the space provided. If you need extra space use the lined pages at the end of this booklet. The question numbers must be clearly shown. - · Answer all the questions. - Where appropriate, your answers should be supported with working. Marks might be given for using a correct method, even if the answer is wrong. #### **INFORMATION** - The total mark for this paper is 90. - The marks for each question are shown in brackets []. - · This document has 28 pages. #### **ADVICE** · Read each question carefully before you start your answer. ## Answer all the questions. 1 Jack wants to compare the density of three different foods. - (a) To calculate density, Jack needs to measure the mass and volume of a sample of each food. - (i) Which measuring instrument should Jack use to measure mass? | | Tick (✔) one box. | | |-----|---|-----| | | Balance | | | | Measuring cylinder | | | | Metre ruler | | | | Thermometer | | | | | [1] | | ii) | Which measuring instrument should Jack use to measure the volume of milk? | | | | Tick (✓) one box. | | | | Balance | | | | Measuring cylinder | | | | Metre ruler | | | | Thermometer | | | (b) |) Complete the sentences to describe how to measure the volume of the butter. | | | | | | |-----|---|----------------------|------------|-------------------|----------|--| | | Use words from the list. | | | | | | | | You can use each word once, more than | once, or not at all. | | | | | | | add measuring cylinder multip | ly balance | divide | ruler | | | | | Measure the length, width and height of | the butter using a | | | | | | | To find the volume, | these thre | ee numbers | together. | [2] | | | (c) | Jack makes these measurements for the | block of butter: | | | | | | | mass = 2.22 kg | | | | | | | | volume = $0.0024 \mathrm{m}^3$ | | | | | | | | Calculate the density of the butter. | | | | | | | | Use the equation: density = mass ÷ volu | me | Danaita - | | 1/3 | . | | | | | Density = | | kg/m ³ | [2] | | | (d) | The cheese is an irregular solid shape. | | | | | | | | Suggest how to measure the volume of t | he cheese. | [2] | | | Kar | eem | researches nuclear fission and nuclear fusion. | | |-----|------|--|-----| | (a) | (i) | Complete the sentence to explain what is meant by nuclear fission. | | | | | Put a ring around the correct answer. | | | | | Fission is when nuclei fuse / grow / shrink / split to form smaller nuclei. | [1] | | | (ii) | Complete the sentence to explain what causes nuclear fission. | | | | | Put a ring around the correct answer. | | | | | Fission happens because some nuclei are negative / positive / unstable / stable . | [1] | | (b) | Dur | ing nuclear fission , energy is released in two main forms. | | | | Hov | v is the energy released? | | | | Tick | x (✓) two boxes. | | | | Ela | stic potential energy of the new particles | | | | Gar | mma radiation | | | | Gra | vitational potential energy of the new particles | | | | Kin | etic energy of the new particles | | | | Rad | lio waves | | | | Sou | ind waves | | | | | | [2] | | (c) | (i) | Describe what happens during nuclear fusion . | [2] | | | (ii) | During nuclear fusion some of the mass is lost. | | | | | What is this mass converted into? | | | | | | [1] | ## 5 BLANK PAGE PLEASE DO NOT WRITE ON THIS PAGE | | | 6 | |---|-----|--| | 3 | Jan | e uses a ripple tank to measure the speed of water waves. | | | (a) | The ripples on the surface of the water in the ripple tank are an example of transverse waves. | | | | Describe the difference between transverse and longitudinal waves. | | | | | | | | | | | | | | | | [2] | | | (b) | The diagram shows a view of part of the ripple tank from above. Waves are travelling from right to left. | | | | A ruler has been placed next to the ripple tank. | | | | ruler wavefronts | | | | direction of travel of waves | | | | (i) The ruler next to the ripple tank is 0.30 m long. | | | | The ruler is the same length as 6 of the waves. | | | | Calculate the wavelength of the waves. | | | | | | | | Wavelength = m [2] | | (ii) Suggest how Jane could use a stopwatch to meas | sure the frequency of the waves in the | |---|--| | ripple tank. | | | | [1] | | 1 | (0) | Ben measures | the wave | length of the | waves to | he 0.08m | |---|-----|-----------------|----------|---------------|------------|-------------| | ٨ | 6 | Dell'illeasules | uie wave | lengui oi uii | e waves ic | De U.UUIII. | The frequency of the waves is 3.0 Hz. Calculate the speed of the waves that Ben measures. Use the equation: wave speed = frequency × wavelength | Speed = |
m/s | [2] | |---------|-----------|-----| | Opeca |
11170 | L-1 | (d) Jane and Ben talk about the experiment. #### Jane I think that it is only the waves that travel along the tank, not the water itself. #### Ben I think that the water travels along the tank with the waves. Jane places a small cork on the water to show Ben that she is correct. | Describe the | motion of the | cork. | | | |--------------|---------------|-------|------|------| | | | |
 |
 | | | | |
 |
 | | | | |
 |
 | 4 Eve needs to buy a vacuum cleaner. She compares two vacuum cleaners. Vacuum cleaner A runs using mains electricity. It is connected to the mains using a cable. Vacuum cleaner B does not have a cable. It runs from energy stored in a battery. (a) Both vacuum cleaners transfer energy from an energy store. | | (i) | Name the form of stored energy that is used by wind turbines to generate mains electricity. | |-----|------|---| | | | [1 | | | (ii) | Name the form of stored energy in a battery. | | | | [1 | | (b) | Vac | uum cleaner B runs out of battery after two hours. | | | Des | scribe what has happened to the energy which was stored in the battery. |[2] (c) The table shows some information about the two vacuum cleaners. (d) | Vacuum cleaner | Α | В | |--------------------------|-----|----| | Input power (W) | 700 | 65 | | Potential difference (V) | 230 | 11 | | In | put power (W) | 700 | 65 | | |------|-----------------------------------|----------------------------|----------------------------|---------------------------| | Po | otential difference (V) | 230 | 11 | | | Cal | culate the current in vac | uum cleaner B . | | | | Use | e the equation: current = | power ÷ potential differen | ence | | | Giv | e your answer to 3 signif | icant figures. | Current = | · | A [3] | | /:\ | Calculate the energy | | | | | (i) | Calculate the energy 600 seconds. | transierred by vacuu | in cleaner A when i | i is operated to | Energy transferred = | = | J [3] | | (ii) | When both vacuum cle more energy. | aners are operated for 6 | 600 seconds, vacuum c | leaner A transfers | | | Explain why. | Turn over © OCR 2020 | 5 | Kai sees | this | information | in | an | advert | for | а | plane | ticke | t. | |---|----------|------|-------------|----|----|--------|-----|---|-------|-------|----| | | | | | | | | | | | | | | Weight limit for bags = 20 kg | | | | | | | | |-------------------------------|--|--|--|--|--|--|--| Kai thinks this information is wrong. The advert does not show weight limits. It shows mass limits. | (a) | Define weight. | | |-----|--|----| | | [| | | (b) | Kai wants to know if his bag is too heavy to take on the plane. He needs to find its weight. | | | | (i) Name a measuring instrument he could use to find its weight. | | | | [| 1] | | | (ii) Describe how he can use your answer to (b)(i) to find the weight of the bag. | | | | [| 1] | | (c) | Kai finds that the weight of his bag is 240 N. | | | | Calculate the mass of the bag. | | | | Gravitational field strength = 10 N/kg | | 6 A Sankey diagram can be used to show how a device transfers energy. The Sankey diagram below is for a car speeding up. (a) Calculate the wasted energy output. Wasted energy output = J [1] (b) Calculate the efficiency of the car. Use values from the Sankey diagram. Use the equation: efficiency = useful energy transferred ÷ total energy transferred Give your answer as a **percentage**. Efficiency =% [3] 7 Sarah's teacher demonstrates some examples of forces. She sets up the equipment shown below. | (a) | One | of the forces acting on the paper clip is the attractive force of the magnet. | | |-----|------|---|----| | | Nan | ne two other forces acting on the paper clip. | | | | 1 | | | | | 2 | | | | | | ι | 2] | | (b) | Sara | ah's teacher says that forces always act in pairs. | | | | The | magnet provides a force of attraction which acts upwards on the paper clip. | | | | Des | cribe the other force in this pair. | | | | | | | | | | [| 2] | | (c) | The | teacher cuts the thread. | | | | (i) | Predict what will happen to the paper clip. | | | | | [| 1] | | | (ii) | Give one reason for your answer to (c)(i). | | | | | | | | | | | 1] | ## 13 BLANK PAGE PLEASE DO NOT WRITE ON THIS PAGE 8 In a pinball machine, a spring is used to push out a small metal ball at high speed. The diagram shows the part of the machine that fires the ball, and the process of firing the ball. To fire the ball, the rod is pulled back. When the rod is released, the ball moves off at a high speed. (a) When the spring is compressed, its length changes by 4.6 cm. Calculate the energy stored in the spring. Spring constant = $400 \,\text{N/m}$. The change of length of the spring is equivalent to its extension. Use the equation: energy stored in a stretched spring = $\frac{1}{2}$ × spring constant × (extension)² **(b)** Energy is stored in the spring, the ball and the metal tube. | (i) | Before the spring is released, the spring is a store of elastic energy. | |------|--| | | Describe how this stored elastic energy changes when the spring is released. | | | | | | | | | | | | [2] | | (ii) | What happens to the total amount of energy in the spring, the ball and the metal tube when the spring is released? | | | | | | [1] | - 9 Amaya and Li measure the speed of sound in air: - Amaya stands 30 m away from Li; - · Amaya claps her hands; - Li starts a timer when he sees the clap; - Li stops the timer when he hears the sound. Table 9.1 shows their results. | Attempt | Time (s) | Calculated speed (m/s) | |---------|----------|------------------------| | 1 | 0.32 | 94 | | 2 | 0.44 | 68 | | 3 | 0.37 | 81 | | 4 | 0.49 | 61 | | 5 | 0.40 | | Table 9.1 (a) Calculate the speed of sound for Attempt 5. Use the equation: speed = distance ÷ time | | | Speed = m/s [2] | |-----|------|--| | (b) | The | expected value for the speed of sound in air is about 300 m/s. | | | (i) | State why the data in Table 9.1 is inaccurate. | | | | | | | | [1] | | | (ii) | State why the data in Table 9.1 is imprecise. | | | | | | | | [1] | © OCR 2020 | (c) | (i) | Describe one improvement to the method. | |-----|------|--| | | | | | | | [1] | | | (ii) | State how your improvement in (c)(i) will produce better data. | | | | | | | | [1] | 10 Mia investigates Hooke's law using the equipment shown in Fig. 10.1. Fig. 10.1 | (a) | Describe how to use the equipment in Fig. 10.1 to investigate how the extension of the spring depends on the force applied to the spring. | |-----|--| | | | | | | | | | | | | | | [3] | | (b) | When Mia applies a force of 8.0 N, the spring has an extension of 0.20 m. | | | Calculate the spring constant of the spring. | | | | Spring constant = N/m [3] (c) A group of students in Mia's class measures the spring constant of another spring. Table 10.1 shows each student's results. | Student | Spring constant (N/m) | |---------|-----------------------| | Alex | 28 | | James | 24 | | Layla | 30 | | Mia | 29 | | Sundip | 25 | **Table 10.1** | (i) | Using Table | 10.1, | find the median | value of the spring constant. | |-----|-------------|-------|-----------------|-------------------------------| |-----|-------------|-------|-----------------|-------------------------------| | Median = | | N/m | [1] |] | |----------|--|-----|-----|---| |----------|--|-----|-----|---| (ii) Using Table 10.1, calculate the mean value of the spring constant. 11 Amir investigates how insulation affects the rate of cooling. He writes down his method. | 1 | Fill a | motal | tin | with | water | at | $g \cap \circ C$ | • | |----|--------|-------|-----|------|-------|----|------------------|-----| | Ί. | rill a | metal | tın | with | water | at | 80 °C | , . | - 2. Wait for 10 minutes. - 3. Measure the new temperature and write it down. - 4. Repeat the experiment for each of these types of insulation: | Experiment | Insulation | |------------|---| | А | None | | В | 1 layer of aluminium foil | | С | 1 layer of bubble wrap | | D | 3 layers of bubble wrap | | E | 1 layer of bubble wrap and 1 layer of aluminium foil | | (a) | Pred | dict which experiment will cool down the slowest. Explain your answer. | |-----|------|--| | | Exp | eriment: | | | Ехр | lanation: | | | | | | | | [2] | | (b) | | r's teacher reads his method. The teacher says that the method is not detailed enough to se the experiment reproducible . | | | (i) | Explain the meaning of the word reproducible . | | | | | | | | | | | | [2] | | | (ii) | Give one piece of additional information that you would need to reproduce Amir's experiment. | | | | | | | | [1] | ## 21 BLANK PAGE PLEASE DO NOT WRITE ON THIS PAGE **12** A low-carbon source causes very little carbon dioxide to be given off into the atmosphere. Some of the energy supplied to the UK comes from low carbon sources. **Fig. 12.1** shows how the percentage of UK energy supplied from low carbon sources has changed over time. | © Edie Newsroom. www.edie.net. Item removed due to third party copyright restrictions. | | |--|--| | | | | | | | | | | | | | | | Fig. 12.1 | (a) | (i) Describe the trend in the percentage of UK energy supplied by biofuels . | | | | |-----|---|---|--|--| | | | [1] | | | | | (ii) | Suggest one reason for this trend. | | | | | | | | | | | | [1] | | | (b) Ali and Ling discuss the trends shown in the data. #### Ali I think that, in the future, we will get more energy from the wind than from nuclear power. | (i) |) Evaluate whether the evidence shown in Fig. 12.1 supports Ali's statement. | | | | | | | |-------|---|-----------|--|--|--|--|--| | | | | | | | | | | | | [2 | | | | | | | | Ling The data shows that in 2016, over 16% of energy was supplied by renewable energy sources. | | | | | | | | (ii) | State why Ling is incorrect . | | | | | | | | | | [1 | | | | | | | (iii) | Using Fig. 12.1 , estimate the correct percentage of energy that was surenewable energy sources in 2016. | yplied by | | | | | | | | | | | | | | | | | Percentage = | % [1] | | | | | | 13 Ultraviolet radiation can be used to disinfect water. Fig. 13.1 shows an ultraviolet disinfection unit. Fig. 13.1 (a) Ultraviolet radiation is emitted by the atoms in the ultraviolet lamp. Describe how changes in atoms can generate ultraviolet radiation. | (b) | Ultra
wate | aviolet disinfection works because ultraviolet radiation harms micro-organisms in er. | the | |-----|---------------|--|---------| | | (i) | Explain why ultraviolet radiation is also harmful to living organisms, including humans | S. | | | | | | | | | | | | | | | [2] | | | (ii) | Suggest how the design of the disinfection unit in Fig. 13.1 prevents it from harm humans. | ning | | | | | | | | | | [1] | | (c) | Alph | ha radiation is also harmful to living organisms. | | | | Give | e two reasons why alpha radiation would not be suitable for disinfecting water. | | | | 1 | | | | | | | | | | 2 | | | | | | |
[2] | ## **END OF QUESTION PAPER** ### 26 ## ADDITIONAL ANSWER SPACE | f additional space is required, you should use the following lined page(s). The question number(s) must be clearly shown in the margin(s). | | | | | |--|--|--|--|--| , | |------------------|---| |
 |
 |
¹ | | #### Copyright Information OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials OCR has attempted to identify and contact all copyright holders whose work is used in this paper of avoid the issue of disclosure of answer-related in ormation to candidates all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet his is produced or each series of examinations and is reely available to download from our public website (www.ocr.org.uk) attention to reproduce the interval of OCR has unwittingly ailed to correctly acknowledge or clear any third-party content in this assessment material OCR will be happy to correct its mistake at the earliest possible opportunity For queries or urther in ormation please contact he OCR Copyright eam he riangle Building Sha tesbury Road Cambridge CB2 8EA OCR is part of the Cambridge Assessment Group Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES) which is itself a department of the University of Cambridge