Oxford Cambridge and RSA

GCE

Further Mathematics B (MEI)

Y434/01: Numerical methods

Advanced GCE

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

Annotations and abbreviations
Annotation in scoris Meaning \checkmark and \boldsymbol{x} BOD Benefit of doubt FT Follow through ISW Ignore subsequent working M0, M1 Method mark awarded 0, 1 A0, A1 Accuracy mark awarded 0, 1 B0, B1 Independent mark awarded 0, 1 E Explanation mark 1 SC Special case \wedge Omission sign MR Misread BP Blank page Highlighting Other abbreviations in mark scheme Meaning E1 Mark for explaining a result or establishing a given result dep* Mark dependent on a previous mark, indicated by *. The may be omitted if only previous M mark. cao Correct answer only oe Or equivalent rot Rounded or truncated soi Seen or implied www Without wrong working AG Answer given awrt Anything which rounds to BC By Calculator DR This indicates that the instruction In this question you must show detailed reasoning appears in the question.

Question		Answer	Marks	AOs		Guidance
2	(b)	the second differences are constant oe	B1	1.1	allow the $3^{\text {rd }}$ differences are zero	
			[1]			
2	(c)	$\begin{aligned} & -0.65+0.3(x-1)+1.82 \times \frac{(x-1)(x-2)}{2!} \\ & {\left[\mathrm{P}_{2}(x)=\right] 0.91 x^{2}-2.43 x+0.87} \end{aligned}$	M1 A1 A1	1.1 1.1 1.1	must be correct form; allow 1 substitution error two of three terms correct all correct	
			[3]			
3	(a)	$\sinh x^{2}-x^{3}-2=0$	B1	1.1	must see $=0$	
			[1]			
3	(b)	=IF(H5>0,G5,E5)	B1	1.1	or $=\mathrm{IF}(\mathrm{H} 5<0, \mathrm{E} 5, \mathrm{G} 5)$	must see $=$
			[1]			
3	(c)	$\frac{1.48719 \times 17.2899-2 \times-0.77825}{17.2899--0.77825} \mathbf{o e}$ awrt 1.50928 awrt 1.52603	M1 A1 A1	$\begin{gathered} \text { 3.1a } \\ 1.1 \\ 1.1 \end{gathered}$	may be implied by 1.509 ... NB $f(1.50928)=-0.6111$ to 4 sf	
			[3]			

Question		Answer	Marks	AOs		Guidance
3	(d)	the ratios are decreasing which suggests the convergence is (slightly) faster than $1^{\text {st }}$ order the ratios are close to 1 which suggests the convergence is slow	B1 B1	$2.2 b$ 2.2b	allow between $1^{\text {st }}$ and $2^{\text {nd }}$ order	do not allow eg not first order
			[2]			
4	(a)	$\frac{4.2472072-4}{0.1}$ or $\frac{4.0239468-4}{0.01}$ or $\frac{4.0023871-4}{0.001}$ or $\frac{4.0002386-4}{0.0001}$ 2.472072 (with $h=0.1$) 2.39468 (with $h=0.01$) 2.3871 (with $h=0.001$) 2.386 (with $h=0.0001$)	M1 A1 A1 A1	3.1a 1.1 1.1 1.1	use of forward difference method any two correct any three correct all four correct	may be implied by one correct answer
			[4]			
4	(b)	comparison of last two estimates 2.39 is secure or 2.386 is possible	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{gathered} 1.1 \\ 2.2 b \end{gathered}$	if M0 allow $\mathbf{S C 1}$ for 2.39 is secure or 2.386 is possible regardless of justification	
			[2]			
5	(a)	$\begin{aligned} & 48 \times 0.5 \text { soi } \\ & £ 24 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \hline \end{gathered}$	$\begin{array}{r} 3.3 \\ 3.4 \\ \hline \end{array}$		
			[2]			
5	(b)	consistent because $1.77<24$	B1	2.4	allow consistent because error $<$ mpe	
			[1]			

Question		Answer	Marks	AOs		Guidance
5	(c)	$\begin{aligned} & 52 \times 0.495 \\ & £ 25.74 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.4 \\ & \hline \end{aligned}$		
			[2]			
5	(d)	this could happen if a large number of items eg cost less than $£ 1$ eg cost $£ 1.99$ or $£ 2.99$ etc eg more than 50p over the pound eg the mean error per item was 52.38 p	B1	3.5a		
			[1]			
5	(e)	mpe $=£ 0.99 n$	B1	3.4	condone omission of units, allow $99 n$ pence	
			[1]			
5	(f)	expected error for Nina’s model is $£ 0$ since you would expect to round half the prices up and half down oe or expected error in Kareem's model is $-£ 0.495 n$ since you would expect the average "chop" to be 49.5 p oe so new model should be "estimated cost" $+£ 0.495 n$	B1 B1	2.4 3.5c		U6

Question		Answer	Marks	AOs		Guidance
6	(c)	N -R generally has $2^{\text {nd }}$ order convergence whereas fixed point iteration generally has $1^{\text {st }}$ order convergence	B1	2.4	allow eg N-R converges faster allow eg fixed point iteration more likely to fail oe	
			[1]			
6	(d)	$\ln (-0.403)$ is undefined (so the spreadsheet cannot compute a value)	B1	2.2a		
			[1]			
6	(e)	0.5 1.0739769 1.4524673 1.6245304 1.6932631 1.7194743 1.7293015 converges to β	M1 A1	2.1 2.2a	need to see at least 3 iterates correct to at least 5 sf	
			[2]			

Question		Answer	Marks	AOs		Guidance
6	(f)	0.5 0.4764669 0.4528879 0.4293074 0.4057756 0.3823498 \ldots 0.1116318 0.1111278 0.1110835 0.1110821 0.1110821 0.111082	M1 A1	1.1 $2.2 \mathrm{a}$	at least 3 correct iterates derived from starting at 0.5 if M0 allow SC1 for 0.111082 from relaxation method used with different x_{0} and at least 3 correct iterates shown	iterates correct to at least 5 sf
			[2]			
7	(a)	$\frac{1}{16}$ isw or 0.0625 isw	B1	2.2a		
			[1]			
7	(b)	by comparison of T_{16} and T_{32} 0.6 is certain or 0.63 is probable	B1	2.2b		
			[1]			

Question		Answer	Marks	AOs		Guidance
7	(c)	r appears to be between 0.25 and 0.5 so order of convergence is between $1^{\text {st }}$ and $2^{\text {nd }}$ order	B1 B1	$2.2 b$ $2.2 b$		
		Alternative $r>0.25$ so convergence slower than $2^{\text {nd }}$ order $r<0.5$ so convergence faster than $1^{\text {st }}$ order	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \hline \end{aligned}$			
			[2]			
7	(d)	$\frac{2 M_{n}+T_{n}}{3} \text { or } \frac{4 T_{2 n}-T_{n}}{3} \text { soi }$ $=(2 * \mathrm{O} 5+\mathrm{N} 5) / 3 \text { or }=(4 * \mathrm{~N} 6-\mathrm{N} 5) / 3$	M1 A1	1.1 1.1	must see $=$	
			[2]			
7	(e)	awrt 0.62658745 awrt 0.00029 awrt 0.354	B1 B1 B1	1.1 1.1 1.1		
			[3]			

Question		Answer	Marks	AOs		Guidance
7	(f)	$S_{2 n}$ and difference from table used in extrapolation awrt 0.62658745 and awrt 0.00029 used $0.62658745+0.00029 \times \frac{r}{1-r}$ awrt 0.62674355 to awrt 0.62675058 comparison with their S_{64} 0.6267 is secure	M1 A1 A1 A1 M1 A1	3.1a 1.1 1.1 1.1 3.2a 2.2b	eg their 0.62658745 and their 0.00029 may see more dp for difference $0.35 \leq r \leq 0.36$ or 0.62675 is possible; allow 0.626746 the last two A marks are only available if answers obtained from extrapolation to infinity from S_{64}	If M0 allow SC2 for awrt 0.626607 obtained from $\frac{16 \times 0.62658745-0.62629755}{15}$ then SC1 for 0.627 obtained from comparison with S_{64}
			[6]			

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

