

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS 4721

Core Mathematics 1

MARK SCHEME

Specimen Paper

MAXIMUM MARK 72

1 (i) $\frac{1}{16}$	В	1 1	For correct value (fraction or exact decimal)
(ii) 8	B		For correct value 8 only
(iii) 6	 M		For $1^3 + 2^3 + 3^3 = 36$ seen or implied
(m) 0	A	.1 2	For correct value 6 only
		4	
2 (i) $x^2 - 8x + 3 = (x - 8x + 3)$	$-4)^2 - 13$ B		For $(x-4)^2$ seen, or statement $a = -4$
i.e. $a = -4, b = -$			For use of (implied) relation $a^2 + b = 3$
	A		For correct value of <i>b</i> stated or implied
(ii) Minimum point i	` ' '		For x-coordinate equal to their $(-a)$
	B	$\begin{bmatrix} 1 & 2 \\ 5 \end{bmatrix}$	For y-coordinate equal to their b
3 (i) Discriminant is h	k^2-4k	<u>—</u> 11	For attempted use of the discriminant
	A		For correct expression (in any form)
(ii) For no real roots			For stating their $\Delta < 0$
Hence $k(k-4) <$			For factorising attempt (or other soln method)
So $0 < k < 4$	A		For both correct critical values 0 and 4 seen For correct pair of inequalities
		6	
4 (i) $\frac{dy}{dx} = 12x^2$	M	1 1	For clear attempt at nx^{n-1}
dx	A	.1 2	For completely correct answer
(ii) $y = x^4 + 2x^2$	В		For correct expansion
Hence $\frac{dy}{dx} = 4x^3$	+4x		For correct differentiation of at least one term
$\mathrm{d}x$			For correct differentiation of their 2 terms
dy 1\frac{1}{2}			For clear differentiation attempt of $x^{\frac{1}{2}}$
(iii) $\frac{dy}{dx} = \frac{1}{2}x^{-\frac{1}{2}}$			_
	A	$\begin{bmatrix} 1 & 2 \\ 7 \end{bmatrix}$	For correct answer, in any form
5 (i) $x^2 - 3x + 2 = 3x$	$-7 \Rightarrow x^2 - 6x + 9 = 0$ M	<u> </u>	For equating two expressions for <i>y</i>
,,	A		For correct 3-term quadratic in <i>x</i>
Hence $(x-3)^2 =$			For factorising, or other solution method
So $x = 3$ and $y =$	= 2 A		For correct value of <i>x</i> For correct value of <i>y</i>
(ii) The line $y = 3x - 3x$	-7 is the tangent to the curve B		For stating tangency
,	at the point (3, 2)		For identifying $x = 3$, $y = 2$ as coordinates
(iii) Gradient of tange			For stating correct gradient of given line
Hence gradient of			For stating corresponding perpendicular grad
Equation of norm	nal is $y-2 = -\frac{1}{3}(x-3)$	11	For appropriate use of straight line equation
i.e. $x+3y-9=0$) A		For correct equation in required form
		11	

6	(i)	x	B1 B1	2	For correct 1st quadrant branch For both branches correct and nothing else
	(ii)	Translation of 2 units in the negative x -direction	B1 B1 B1		For translation parallel to the <i>x</i> -axis For correct magnitude For correct direction
		x x	B1√ B1	5	For correct sketch of new curve For some indication of location, e.g. $\frac{1}{2}$ at y-intersection or -2 at asymptote
	(iii)	Derivative is $-x^{-2}$	M1 A1	2	For correct power -2 in answer For correct coefficient -1
	(iv)	Gradient of $y = \frac{1}{x}$ at $x = 2$ is required This is -2^{-2} , which is $-\frac{1}{4}$	B1 M1 A1	3	For correctly using the translation For substituting $x = 2$ in their (iii) For correct answer
				12	
7	(i)	$AB^2 = (10-2)^2 + (3-9)^2 = 100$ Hence the radius is 5 Mid-point of AB is $\left(\frac{2+10}{2}, \frac{9+3}{2}\right)$ Hence centre is (6, 6)	M1 A1 M1	4	For correct calculation method for AB^2 For correct value for radius For correct calculation method for mid-point For both coordinates correct
	(ii)	Equation is $(x-6)^2 + (y-6)^2 = 5^2$ This is $x^2 - 12x + 36 + y^2 - 12y + 36 = 25$ i.e. $x^2 + y^2 - 12x - 12y + 47 = 0$, as required	M1 A1 A1		For using correct basic form of circle equn For expanding at least one bracket correctly For showing given answer correctly
	(iii)	Gradient of AB is $\frac{3-9}{10-2} = -\frac{3}{4}$	M1 A1		For finding the gradient of AB For correct value $-\frac{3}{4}$ or equivalent
		Hence perpendicular gradient is $\frac{4}{3}$ Equation of tangent is $y-3=\frac{4}{3}(x-10)$ Hence <i>C</i> is the point $(\frac{31}{4},0)$	A1 ✓ M1 M1 A1	6	For relevant perpendicular gradient For using their perp grad and <i>B</i> correctly For substituting $y = 0$ in their tangent eqn For correct value $x = \frac{31}{4}$
				13	

4721 Specimen Paper [Turn over

8 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x^2 - 6x - 12$	M1	F	For differentiation with at least 1 term OK
		A1	F	For completely correct derivative
	Hence $x^2 - x - 2 = 0$	M1	- 1	For equating their derivative to zero
	$(x-2)(x+1) = 0 \Rightarrow x = 2 \text{ or } -1$	M1	- 1	For factorising or other solution method
	g, d,	A1	- 1	For both correct <i>x</i> -coordinates
	Stationary points are (2, -27) and (-1, 0)	A1	6 F	For both correct y-coordinates
(ii)	$\frac{d^2 y}{dx^2} = 12x - 6 = \begin{cases} +18 \text{ when } x = 2\\ -18 \text{ when } x = -1 \end{cases}$	M1		For attempt at second derivative and at least
	H(2 27) ''	A 1	- 1	one relevant evaluation
	Hence $(2, -27)$ is a min and $(-1, 0)$ is a max	A1	- 1	For either one correctly identified
		A1	(.	For both correctly identified Alternative methods, e.g. based on gradients either side, are equally acceptable)
(iii)	$RHS = (x^2 + 2x + 1)(2x - 7)$	M1	F	For squaring correctly and attempting
	$=2x^3-7x^2+4x^2-14x+2x-7$		c	complete expansion process
	$=2x^3-3x^2-12x-7$, as required	A1	- 1	For obtaining given answer correctly
(iv)	$(-1,0) \\ (0,-7) \\ (2,-27)$ x	B1 B1 B1	3 F	For correct cubic shape For maximum point lying on <i>x</i> -axis For $x = \frac{7}{2}$ and $y = -7$ at intersections