

GCE

Chemistry A

Unit F325: Equilibria, Energetics and Elements

Advanced GCE

Mark Scheme for June 2015

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2015

1. These are the annotations, (including abbreviations), including those used in scoris, which are used when marking

Annotation	Meaning of annotation
BDD	Benefit of doubt given
CON	Contradiction
×	Incorrect response
ECF	Error carried forward
	Ignore
NAQ	Not answered question
NBOD	Benefit of doubt not given
POT	Power of 10 error
	Omission mark
RE	Rounding error
SF	Error in number of significant figures
 Image: A start of the start of	Correct response

2. Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Meaning
Answers which are not worthy of credit
Statements which are irrelevant
Answers that can be accepted
Words which are not essential to gain credit
Underlined words must be present in answer to score a mark
Error carried forward
Alternative wording
Or reverse argument

- 3. The following questions should be annotated with **ALL annotations** to show where marks have been awarded in the body of the text: **1(d)**
 - 3(b)(i)
 - 3(b)(iv)
 - 4(e)(iii)
 - 5(b)(ii)
 - 7(b)

C	Questi	ion	Answer		Guidance
1	(a)		(+)5 ✓		ALLOW 5+ OR V OR Cr ⁵⁺
1	(b)		For equations, IGNORE any state symbols; ALLOW multiples Any correct equation for a reaction catalysed by a transition element, compound or ion AND transition element, compound or ion (by formula or name) ✓	1	EXAMPLES $N_2 + 3H_2 \Rightarrow 2NH_3$ (allow \rightarrow) AND Fe/iron oxide $2SO_2 + O_2 \Rightarrow 2SO_3$ (allow \rightarrow) AND V_2O_5 /Pt $2CO + 2NO \rightarrow 2CO_2 + N_2$ AND Pt/Pd/Rh/AuEquation for any alkene + $H_2 \rightarrow$ alkane AND Ni/Pt/Pd $C_6H_6 + Cl_2 \rightarrow C_6H_5Cl + HCl$ AND Fe/FeCl_3/Fe ³⁺ $C_6H_6 + Br_2 \rightarrow C_6H_5Br + HBr$ AND Fe/FeBr_3/Fe ³⁺ $2H_2O_2 \rightarrow 2H_2O + O_2$ AND MnO2For other examples, CHECK with TL
1	(c)	(i)	 Donates two electron pairs (to a metal ion) AND forms two coordinate bonds (to a metal ion) ✓ NOTE: Metal ion not required as Ni³⁺ is in the question 	1	ALLOW lone pairs for electron pairs ALLOW dative (covalent) bonds for coordinate bonds TWO is only needed once, e.g. Donates two electron pairs to form coordinate bonds Donates electron pairs to form two coordinate bonds
1	(c)	(ii)	$C_3H_{10}N_2 \checkmark$	1	ALLOW in any order IGNORE structure
1	(c)	(iii)	MARK INDEPENDENTLY 		ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW H ₂ NCH ₂ CH(CH ₃)NH ₂ OR H ₂ NCH(CH ₂ CH ₃)NH ₂ ALLOW secondary or tertiary diamines or mixture
			Each N OR each NH₂ OR amine group has a lone pair/electron pair pair OR lone pairs shown on N atoms in structure ✓	2	IGNORE complex ion For other examples, CHECK with TL

C	Question		Answer	Marks	Guidance	
1	(c)	(iv)	6 ✓	1		
1	(c)	(v)	3–D diagrams of BOTH optical isomers required for the mark	1	In this part, Charge AND Square brackets NOT required IGNORE N or attempts to draw structure of bidentate ligand Other orientations possible but all follow same principle with 2nd structure being a mirror image of the first	

C	uestion	Answer	Marks	Guidance	
1	(d)	Quality of written communication Observation must be linked to the correct reaction REACTIONS OF AQUEOUS Cu ²⁺		FULL ANNOTATIONS MUST BE USED THROUGHOUT ALLOW some reactions for Cu ²⁺ and some for Co ²⁺ ALLOW equilibrium signs in all equations IGNORE any incorrect initial colours IGNORE state symbols IGNORE an incorrect formula for an observation	
		Correct balanced equation $Cu^{2^+}(aq) + 2OH^-(aq) \longrightarrow Cu(OH)_2(s) \checkmark$ state symbols not required Observation blue precipitate/solid \checkmark	2	ALLOW $[Cu(H_2O)_6]^{2^+} + 2OH^- \rightarrow Cu(OH)_2(H_2O)_4 + 2H_2O$ ALLOW full or 'hybrid' equations, e.g. $Cu^{2^+} + 2NaOH \rightarrow Cu(OH)_2 + 2Na^+$ $[Cu(H_2O)_6]^{2^+} + 2OH^- \rightarrow Cu(OH)_2 + 6H_2O$ $_4 + 2NaOH \rightarrow Cu(OH)_2 + Na_2SO_4$ ALLOW full or 'hybrid' equations, $_4 + 2NaOH \rightarrow Cu(OH)_2 + Na_2SO_4$ ALLOW full or 'hybrid' equations, $_4 + 2NaOH \rightarrow Cu(OH)_2 + Na_2SO_4$	
1	(d)	REACTION OF Cu^{2^+} WITH excess $NH_3(aq)$ Correct balanced equation $[Cu(H_2O)_6]^{2^+} + 4NH_3 \longrightarrow [Cu(NH_3)_4(H_2O)_2]^{2^+} + 4H_2O \checkmark$ Observationdeep/dark blue (solution) \checkmark	2	IGNORE initial precipitation of Cu(OH) ₂ IGNORE [Cu(NH ₃) ₄] ²⁺ ALLOW royal blue, ultramarine blue or any blue colour that is clearly darker than for [Cu(H ₂ O) ₆] ²⁺ DO NOT ALLOW deep blue precipitate for observation	
1	(d)	REACTION OF Cu²⁺ WITH HCl(aq) Correct balanced equation $[Cu(H_2O)_6]^{2^+} + 4Cl^- \longrightarrow [CuCl_4]^{2^-} + 6H_2O \checkmark$ Observation yellow (solution) \checkmark	2	IGNORE mention of different concentrations of HCI ALLOW $CuCl_4^{2-}$ i.e. no brackets OR $Cu(Cl)_4^{2-}$ ALLOW $[Cu(H_2O)_6]^{2+} + 4HCI \longrightarrow [CuCl_4]^{2-} + 6H_2O + 4H^+$ IGNORE $Cu^{2+} + 4Cl^- \longrightarrow CuCl_4^{2-}$ ALLOW green–yellow OR yellow–green DO NOT ALLOW yellow precipitate for observation	

Question	Answer	Marks	Guidance	
1 (d)	Quality of written communication Observation must be linked to the correct reaction REACTIONS OF AQUEOUS Co ²⁺		FULL ANNOTATIONS MUST BE USED THROUGHOUT ALLOW some reactions for Cu ²⁺ and some for Co ²⁺ ALLOW equilibrium signs in all equations IGNORE any incorrect initial colours IGNORE state symbols IGNORE an incorrect formula for an observation	
	Correct balanced equation $Co^{2^+}(aq) + 2OH^-(aq) \longrightarrow Co(OH)_2(s) \checkmark$ state symbols not required Observation blue precipitate/solid \checkmark	2	ALLOW $[Co(H_2O)_6]^{2^+} + 2OH^- \rightarrow Co(OH)_2(H_2O)_4 + 2H_2O$ ALLOW full or 'hybrid' equations, e.g. $Co^{2^+} + 2NaOH \rightarrow Co(OH)_2 + 2Na^+$ $[Co(H_2O)_6]^{2^+} + 2OH^- \rightarrow Co(OH)_2 + 6H_2O$ $_4 + 2NaOH \rightarrow Co(OH)_2 + Na_2SO_4$ ALLOW full or 'hybrid' equations, $_4 + 2NaOH \rightarrow Co(OH)_2 + Na_2SO_4$	
1 (d)	REACTION OF Co ²⁺ WITH excess NH₃(aq)		IGNORE changes in colour over time IGNORE initial precipitation of Co(OH) ₂	
	Correct balanced equation $[Co(H_2O)_6]^{2+} + 6NH_3 \longrightarrow [Co(NH_3)_6]^{2+} + 6H_2O \checkmark$ Observation brown/yellow (solution) \checkmark	2	ALLOW any shade of brown or yellow DO NOT ALLOW brown/yellow precipitate for observation	
1 (d)	REACTION OF Co²⁺ WITH HCI(aq) Correct balanced equation $[Co(H_2O)_6]^{2+} + 4CI^- \longrightarrow [CoCl_4]^{2-} + 6H_2O \checkmark$ Observation blue (solution) \checkmark	2	IGNORE mention of different concentrations of HCl ALLOW $CoCl_4^{2-}$ i.e. no brackets OR $Co(Cl)_4^{2-}$ ALLOW $[Co(H_2O)_6]^{2^+} + 4HCl \longrightarrow [CoCl_4]^{2^-} + 6H_2O + 4H^+$ IGNORE $Co^{2^+} + 4Cl^- \longrightarrow CoCl_4^{2^-}$ ALLOW any shades of blue DO NOT ALLOW blue precipitate for observation	
I	Total	14		

Q	uestion	Answer		Guidance			
2	(a)	NOTE: First 3 marks are ONLY available from an expression using [NO]2 Units are marked independentlyUsing values ON THE CURVE in CORRECT expression1		the graph, The [NO] bel For these [N	nd [NO] are any co low are the most c O] values, these a	ommonly se re the ONLY	en. Y rates allowed
		mark		[NO]	rate	k	<u>k</u>
		Use of any two correct values for rate and [NO] from graph		1.0 × 10 ⁻⁴	0.1×10^{-4} to	50000	5.0×10^4
		e.g. for 5.0 × 10^{-4} and 4.2×10^{-4} ,			0.2×10^{-4}	100000	1.0×10^5
		$k = \frac{4.2 \times 10^{-4}}{(2.0 \times 10^{-2}) \times (5.0 \times 10^{-4})^2}$		2.0 × 10 ⁻⁴	0.6×10^{-4} to	75000	7.5×10^4
		$(2.0 \times 10^{-2}) \times (5.0 \times 10^{-4})^2$			0.7×10^{-4}	87500	8.8×10^4
				3.0×10^{-4}	1.5×10^{-4}	83333	8.3×10^4
		OR $4.2 \times 10^{-4} = k(2.0 \times 10^{-2}) \times (5.0 \times 10^{-4})^2 \checkmark$		4.0×10^{-4}		84375	8.4×10^4
				$\frac{5.0 \times 10^{-4}}{6.0 \times 10^{-4}}$	4.2 × 10 ⁻⁴ 6.0 × 10 ⁻⁴	84000	8.4×10^4 8.3×10^4
		Calculation of <i>k</i> 2 marks		6.0×10^{-4} 7.0 × 10 ⁻⁴	8.2×10^{-4}	83333 83673	8.3×10^{4} 8.4×10^{4}
		<i>k</i> calculated correctly from values obtained from graph BUT NOT in standard form AND/OR more than 2 SF 6.0×10^{-4}			any doubt, conta DRE any numbers		tangents
		e.g. $k = \frac{6.0 \times 10^{-4}}{(2.0 \times 10^{-2}) \times (6.0 \times 10^{-4})^2} = 83333.33$ \checkmark					
		OR FOR 2 MARKS <i>k</i> calculated correctly from values obtained from graph AND in standard form AND TO 2 SF e.g. $k = 83333.33$ gives $8.3 \times 10^4 \checkmark$		from ONLY 1 . Powers of 2 . [H ₂] ² [NO]	ASES that ALLOW ONE of the follow 10 incorrect or ab used instead of [H within ±0.2 of actu	ving (2 mark sent in initia 2][NO] ²	ks) I <i>k</i> expression
		UNITS FOR 1 MARK: dm ⁶ mol ⁻² s ⁻¹ \checkmark	4	ALLOW unit	s in any order, e.g	. mol ^{−2} dm ⁶ s	5 ⁻¹

Q	uesti	on	Answer	Marks	Guidance
2	(b)	(i)	Image: rate H L Image: rate Image: rate Image: rate Image: rate Image:	2	 ALLOW 1 mark for two upward sloping curves starting at origin AND upper curve labelled H and lower curve labelled L NOTE: ALLOW some leeway for lines starting from origin ALLOW straight line not drawn with ruler, i.e. is a straight line rather than a curve ALLOW similar labelling as long as it is clear which line is which
2	(b)	(ii)	increases ✓	1	
2	(c)		MARK INDEPENDENTLY (H ₂ (g)) (H	2	ALLOW curve touching y axis ALLOW curve touching x axis ALLOW Two half lives are the same IGNORE 'regular' half life (not necessarily the same)

Q	Question		Answer	Marks	Guidance
2	(d)	(i)	$H_2 + N_2O \rightarrow N_2 + H_2O \checkmark$	1	ONLY correct answer DO NOT ALLOW multiples
2	(d)	(ii)	Steps 1 AND Step 2 together give 2NO + H ₂ ✓	1	 ALLOW Step 1 AND Step 2 together give species in same ratio as in rate equation ALLOW rate-determining step/slow step for Step 2 ALLOW H₂ reacts with N₂O₂ which is formed from 2NO NOTE: The response must link Step 1 with Step 2 Steps can be referenced from the species in each step
			Т	otal 11	

Q	Question		Answer	Marks	Guidance
3	(a)	(i)	5 mol/molecules (of gas) forms 3 mol/molecules (of gas) √	1	ALLOW reaction forms fewer moles/molecules IF stated, numbers of molecules MUST be correct IGNORE comments related to ΔG OR disorder (even if wrong)
3	(a)	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer =(+)131 (J K ⁻¹ mol ⁻¹), award 2 marks 	2	NOTE: IF any values are omitted, DO NOT AWARD any marks. e.g. –164 may be missing ALLOW FOR 1 mark –131 wrong final sign 49 wrong sign for 164 79.5 no use of 2 524 no division by 4 38 wrong sign for 186 –75 wrong sign for 206 250 wrong sign for 238 Any other number: CHECK for ECF from 1st marking point for expressions using ALL values with ONE error only e.g. one transcription error:, e.g.146 for 164

Q	uesti	on	Answer	Marks	Guidance
3	(a)	(iii)	NOTE: DO NOT ALLOW answer to 3(a)(ii) for $\triangle G$ calculation $\triangle G$ calculation: 2 marks		ALLOW $\triangle G$ correctly calculated from 3 SF up to calculator value of -185.128
			$\Delta G = -234 - 298 \times -0.164 \checkmark$ = -185 (kJ mol ⁻¹) \checkmark IGNORE units (even if wrong) -185 subsumes 1st mark)	2	ALLOW working in J, <i>ie</i> : $\Delta G = -234000 - 298 \times -164 \checkmark$ $= -185000 \text{ (J mol}^{-1}) \checkmark$ ALLOW 1 mark for use of 25 OR mixture of kJ and J, e.g. $\Delta G = -234 - 25 \times -0.164 = -229.9$ $\Delta G = -234 - 298 \times -164 = +48638$
			Feasibility comment for negative ΔG answer: 1 mark (Forward) reaction is feasible / spontaneous AND $\Delta G < 0 / \Delta H - T\Delta S < 0 \checkmark$	1	ALLOW ECF if calculated value for ΔG is +ve Then 'correct' response for 3rd mark would be not feasible/not spontaneous AND $\Delta G > 0 / \Delta H - T\Delta S > 0$
3	(a)	(iv)	$(\Delta G =) -234 - 1427 \times \frac{-164}{1000} = 0$ (calculator 0.028(kJ) OR 28 (J)) \checkmark 2 nd mark only available if 1 st mark has been awarded (Above 1427K/1154°C), reaction is not feasible/ not spontaneous \checkmark OR 1427 K is maximum temperature that reaction happens	2	ALLOW (When $\Delta G = 0$) $T = \frac{-234}{-0.164} = 1427 \text{ K OR } \frac{-234000}{-164} = 1427 \text{ K}$ For 2nd mark, IF ΔG is +ve from (a)(iii) ALLOW ECF for: Above 1427 K, reaction is feasible / spontaneous OR 1427 K is minimum temperature that reaction happens IGNORE LESS feasible
					IGNORE comparisons of the signs of $T\Delta S$ and ΔH , e.g IGNORE $T\Delta S$ is more negative than ΔH

Ques	stion	Answer	Marks	Guidance
	stion) (i)	AnswerFIRST, CHECK THE ANSWER ON ANSWER LINEIF answer = 57.6 dm³ mol ⁻¹ , award 6 marksIF answer = 57.6 with incorrect units, award 5 mark	Marks	FULL ANNOTATIONS NEEDED IF there is an alternative answer, check to see if there is any ECF credit possible using working below
3 (b	o) (ii)	(Pressure) decreases AND fewer molecules/moles ✓	1	calculation and units COMMON ERRORS 0.0294 3 marks + units mark from SO ₂ = 0.820, O ₂ = 0.410, SO ₃ = 0.180 (mol) For fewer moles, ALLOW 3 mol \rightarrow 2 mol ALLOW more moles of reactants

Q	Question		Answer	Marks	Guidance	
3	(b)	(iii)	i) ΔH is negative / '- ' / -ve AND yield of SO ₃ decreases \checkmark		IGNORE exothermic and endothermic	
3	(b)	(iv)	IGNORE le Chatelier responses		FULL ANNOTATIONS NEEDED	
			Each marking point is independent			
			K_c K_c does not change (with pressure/ concentration) \checkmark		ALLOW K_c only changes with temperature IF 1 st marking point has been awarded, IGNORE comments about ' K_c decreasing' or ' K_c increasing' and assume that this refers to how the ratio subsequently changes. i.e DO NOT CON 1 st marking point.	
			Comparison of conc terms with more O_2 [O_2]/concentration of oxygen is greater OR denominator/bottom of K_c expression is greater \checkmark		IGNORE O ₂ is greater/increases	
			QWC: yield of SO₃ linked to K _c (Yield of) SO ₃ is greater/increases AND numerator/top of K _c expression is greater/increases \checkmark	3	ALLOW (Yield of) SO ₃ is greater/increases AND to reach/restore K_c value \checkmark	
			Total	19		

Q	Question		Answer	Marks	Guidance
4	(a)		Proton/H ⁺ donor AND Partially dissociates/ionises ✓	1	
4	(b)		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 13.7(0), award 2 marks $[H^+] = \frac{1.00 \times 10^{-14}}{0.5(00)} \text{ OR } 2(.00) \times 10^{-14} \text{ (mol dm}^{-3}) \checkmark$ $pH = -\log 2(.00) \times 10^{-14} = 13.7(0) \checkmark$	2	For pOH method:, ALLOW pOH = $-\log[OH^-] = 0.3(0) \checkmark$ (calculator 0.301029995) ALLOW pH = 14 - 0.3 = 13.7 \checkmark ALLOW 13.7 up to calculator value of 13.69897 correctly rounded. ALLOW ECF from incorrect [H ⁺ (aq)] provided that pH >7
4	(c)	(i)	$(\mathcal{K}_{a} =) \frac{[H^{+}] [C_{2}H_{5}COO^{-}]}{[C_{2}H_{5}COOH]} \checkmark$	1	IGNORE $\frac{[H^+]^2}{[C_2H_5COOH]} \text{ OR } \frac{[H^+][A^-]}{[HA]}$ ALLOW [H ₃ O ⁺] for [H ⁺] IGNORE state symbols

Question	Answer	Marks	Guidance	
Question 4 (c) (ii)		3	ALLOW HA for C ₂ H ₅ COOH and A ⁻ for C ₂ H ₅ COO ⁻ ALLOW ECF from incorrectly calculated [C ₂ H ₅ COOH] ALLOW 1.27 × 10 ⁻³ to calculator value of 1.272792206 × 10^{-3} correctly rounded ALLOW 2.9(0) × 10 ⁻³ to calculator value of 2.895242493 correctly rounded ALLOW use of quadratic equation which gives same	
	NOTE : The final two marks are ONLY available from attempted	3	correctly rounded	

Q	uesti	on	Answer	Marks	Guidance
4	(d)	(i)	$2C_2H_5COOH + Na_2CO_3 \rightarrow 2C_2H_5COONa + CO_2 + H_2O \checkmark$	1	IGNORE state symbols and use of equilibrium sign FOR $CO_2 + H_2O$ ALLOW H_2CO_3 ALLOW $C_2H_5COO^-Na^+$ OR $C_2H_5COO^- + Na^+$ BUT BOTH + and – charges must be shown ALLOW NaC_2H_5COO
4	(d)	(ii)	$H^{+} + OH^{-} \to H_2O \checkmark$	1	ALLOW $C_2H_5COOH + OH^- \rightarrow C_2H_5COO^- + H_2O$ IGNORE state symbols
4	(e)	(i)	pH = –log 1.35 × 10 ^{−5} = 4.87 ✓	1	ONLY correct answerDO NOT ALLOW 4.9(Question asks for 2 DP)
4	(e)	(ii)	Added ammonia C_2H_5COOH removes added NH ₃ /alkali/base OR $C_2H_5COOH + NH_3 / OH^- \rightarrow$ OR NH ₃ /alkali reacts with/accepts H ⁺ OR H ⁺ + NH ₃ \rightarrow OR H ⁺ + OH ⁻ $\rightarrow \checkmark$		ALLOW use of HA/weak acid/acid for C_2H_5COOH ; ALLOW use of NH ₄ OH for NH ₃
			Equilibrium $\rightarrow C_2 H_5 COO^- \mathbf{OR}$ Equilibrium \rightarrow right \checkmark	2	ALLOW A ⁻ for $C_2H_5COO^-$ ASSUME that equilibrium applies to that supplied in the question, i.e. IGNORE any other equilibria

Question		Answer	Marks	Guidance	
4 (e)	(iii)	CHECK WORKING CAREFULLY AS CORRECT NUMERICAL ANSWER IS POSSIBLE FROM WRONG VALUES		FULL ANNOTATIONS MUST BE USED	
		ALLOW HA and A ⁻ throughout Amount of Mg (1 mark) $n(Mg) = \frac{6.075}{24.3} = 0.25(0) \text{ mol } \checkmark$ Moles/concentrations(2 marks) $n(C_2H_5COOH) = 1.00 - (2 \times 0.25) = 0.50 \text{ (mol) } \checkmark$ $(C_2H_5COO^-) = 1.00 + (2 \times 0.25) = 1.50 \text{ (mol) } \checkmark$		For $n(Mg)$, 1 mark ALLOW ECF for ALL marks below from incorrect $n(Mg)$ ECF ONLY available from concentrations that have • subtracted 0.50 OR 0.25 from 1 for $[C_2H_5COOH]$ • added 0.50 OR 0.25 to 1 for $[C_2H_5COO^-]$ <i>i.e.</i> For moles/concentration 1 mark (1 mark lost) 1. $n (C_2H_5COOH) = 0.75$ AND $n(C_2H_5COO^-) = 1.25$ 2. $n(C_2H_5COOH) = 0.50$ AND $n(C_2H_5COO^-) = 1.25$ 3. $n(C_2H_5COOH) = 0.75$ AND $n(C_2H_5COO^-) = 1.50$	
		<i>P</i>	4	ALLOW ECF ONLY for the following giving 1 additional mark and a total of 3 marks 1. $[H^+] = 1.35 \times 10^{-5} \times \frac{0.75}{1.25}$ pH = -log 8.1 × 10 ⁻⁶ = 5.09	
		NOTE: IF there is no prior working, ALLOW 4 MARKS for $[H^+] = 1.35 \times 10^{-5} \times \frac{0.50}{1.50}$ AND pH = 5.35		2. $[H^{+}] = 1.35 \times 10^{-5} \times \frac{0.50}{1.25}$ pH = -log 5.4 × 10 ⁻⁶ = 5.27 3. $[H^{+}] = 1.35 \times 10^{-5} \times \frac{0.75}{1.50}$ pH = -log 6.75 × 10 ⁻⁶ = 5.17	
		IF the ONLY response is pH = 5.35, award 1 mark ONLY		1.00	
		Award a maximum of 1 mark (for $n(Mg) = 0.25$ mol) for: pH value from K_a square root approach (weak acid pH) pH value from $K_w / 10^{-14}$ approach (strong base pH)			
		ALLOW alternative approach based on Henderson–Hasselbalch encoded pH = $pK_a + \log \frac{1.5}{0.5}$ OR $pK_a - \log \frac{0.5}{1.5}$ pH = 4	final 1 mark = 5.35 \checkmark ALLOW $_{-\log} K_a$ for pK_a		
I		Total	16		

Q	Question		Answer	Marks	Guidance
5	(a)	(ii)	(The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound from its gaseous ions (under standard conditions) ✓✓	2	IGNORE 'Energy needed' OR 'energy required' ALLOW one mole of compound is formed/made from its gaseous ions ALLOW as alternative for compound: lattice, crystal,
			Award marks as follows.		substance, solid
			1st mark: formation of compound from gaseous ions 2nd mark: one mole for compound only		IGNORE : $Fe^{2+}(g) + 2I^{-}(g) \longrightarrow Fel_{2}(s)$ (Part of cycle)
			DO NOT ALLOW 2nd mark without 1st mark		ALLOW 1 mark for absence of 'gaseous' only, i.e. the formation of one mole of a(n ionic) compound from its ions (under standard conditions) ✓
			DO NOT ALLOW any marks for a definition for enthalpy change of formation BUT note the two concessions in guidance		ALLOW 1 mark for $\Delta H_{\rm f}$ definition with 'gaseous': the formation of one mole of a(n ionic) compound from its gaseous elements (under standard conditions) \checkmark

Q	uesti	ion	Answer	Marks	Guidance
5			P FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -2473 (kJ mol ⁻¹) award 2 marks 		 IF there is an alternative answer, check to see if there is any ECF credit possible using working below. See list below for marking of answers from common errors ALLOW for 1 mark: +2473 wrong sign -2661 107 and -295 used instead of 2 × 107 and 2 × -295 -2366 +107 used instead of 2 × 107 -2768 -295 used instead of 2 × -295 -3653 wrong sign for 295 -2247 wrong sign for 113 -1641 wrong sign for 2 × 107 -955 wrong sign for 2 × 107 -955 wrong sign for 2 × 107 -3653 wrong sign for 2 × -295 Any other number: CHECK for ECF from 1st marking point for expressions with ONE error only e.g. one transcription error: e.g. +461 instead of +416
5	(b)	(i)	Fe ²⁺ : 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁶ ✓ Br [–] : 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁶ ✓	2	ALLOW 4s before 3d, ie $1s^22s^22p^63s^23p^64s^23d^{10}4p^6$ ALLOW $1s^2$ written after answer prompt (<i>ie</i> $1s^2$ twice) ALLOW upper case D, etc and subscripts, e.g $4S_23D_1$ ALLOW for Fe ²⁺ $4s^0$ DO NOT ALLOW [Ar] as shorthand for $1s^22s^22p^63s^23p^6$ Look carefully at $1s^22s^22p^63s^23p^6$ – there may be a mistake

Qı	uesti	on	Answer	Marks	Guidance	
5	(b)	(ii)			FULL ANNOTATIONS NEEDED	
			With Cl ₂ AND Br ₂ AND I ₂ products are Fe ²⁺ (AND halide ion) FeCl ₂ AND FeBr ₂ AND Fel ₂ ✓		ALLOW products within equations (even if equations are not balanced) IF stated, IGNORE reactants	
			OR Evidence that two electrode potentials have been compared for at least ONE reaction, ✓ e.g. Fe –0.44 AND Cl ₂ +1.36 e.g. Iron has more/most negative electrode potential		ALLOW response in terms of positive 'cell reactions', e.g Fe + Cl ₂ \rightarrow Fe ²⁺ + 2Cl ⁻ E = (+)1.80 V IGNORE comments about reducing and oxidising agents and electrons	
			With Cl ₂ AND Br ₂ , products are Fe ³⁺ (AND halide ion) FeCl ₃ AND FeBr ₃ ✓	3		
5	(c)		BR TH EQUATIONS REQUIRE IONS PROVIDED IN QUESTION Reaction 1: 2 marks		ALLOW correct multiples throughout ALLOW equilibrium signs in all equations	
			1st mark for ALL CORRECT species e.g.: $Fe^{2^+} + NO_3^- + H^+ \rightarrow Fe^{3^+} + NO + H_2O$ 2nd mark for CORRECT balanced equation		For 1st mark, IGNORE e ⁻ present	
			$3Fe^{2^+} + NO_3^- + 4H^+ \rightarrow 3Fe^{3^+} + NO + 2H_2O \checkmark \checkmark$			
			Reaction 2: 1 mark ${}_{2}O)_{6}]^{2+}$ + NO → [Fe(H ₂ O) ₅ NO] ²⁺ + H ₂ O ✓	3	Check carefully for correct charges	
	1		[Fe(H Total	16		

Q	Question		Answer	Marks	
6	(a)		E° redox system Most negative E C Least negative D	1	ALL 3 correct for 1 mark
6	(b)	(i)	pH = 0 ✓	1 G	uidance
6	(b)	(ii)	 H redox system is more negative (e.g. has a more -ve <i>E</i> OR less +ve <i>E</i> OR is -ve electrode) OR H redox system releases electrons (May be in equation, e.g. H₂ → 2H⁺ + 2e⁻) ✓ Equilibrium shifts to increase [H⁺] OR H⁺ OR standard hydrogen equation shifts to increase [H⁺] OR H⁺ ✓ 	2	 ALLOW ORA, <i>ie</i> Ag redox system (D) has more positive <i>E</i> / less negative <i>E</i> ALLOW equilibrium sign IGNORE H is more reactive ORA IGNORE direction of equilibrium shift
6	(b)	(iii)	H_{2+} 2Ag ⁺ \rightarrow 2Ag + 2H ⁺ \checkmark	1	ALLOW multiples e.g. $\frac{1}{2}H_2 + Ag^+ \rightarrow Ag + H^+$ State symbols NOT required ALLOW equilibrium sign
6	(C)	(i)	$-H_2O \Rightarrow HCN OH^-$ AND Base ₁ 2 Acid 1 Acid 2 ₁ Base 1 \checkmark CN	1	State symbols NOT required ALLOW CNH and HO ⁻ (i.e. any order) ALLOW 1 and 2 labels the other way around. ALLOW 'just acid' and 'base' labels throughout if linked by lines so that it is clear what the acid-base pairs are.

Q	Question		Answer	Marks	Guidance
6	(c)	(ii)	H ⁺ reacts with CN [−] OR HCN forms OR equation: H ⁺ + CN [−] → HCN (ALLOW \Rightarrow) OR CN [−] accepts a proton/H ⁺ OR equilibrium shifts right AND CN [−] is removed \checkmark	1	 ALLOW Acid reacts with/removes OH⁻ ions (to form HCN) ALLOW CNH (i.e. any order) IGNORE other equilibrium comments
6	(d)	(i)	Fuel reacts with oxygen/oxidant to give electrical energy/voltage✓	1	 ALLOW named fuel. e.g. hydrogen/H₂; ethanol; methanol, etc ALLOW fuel cell requires constant supply of fuel AND oxygen/an oxidant OR fuel cell operates continuously as long as a fuel AND oxygen/an oxidant are added IGNORE 'reactants' 'products' and comments about pollution and efficiency
6	(d)	(ii)	ethanol is a liquid OR is less volatile OR ethanol is easier to store/transport/stored more safely OR hydrogen is explosive/more flammable OR ethanol has more public/political acceptance ✓	1	Assume that 'it' refers to ethanol ALLOW ORA throughout IGNORE ethanol has a higher boiling point IGNORE H ₂ is a gas IGNORE 'produces no CO ₂ ' OR less pollution IGNORE comments about efficiency IGNORE comments about biomass and renewable
6	(d)	(iii)	$C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O \checkmark$	1	Correct species AND balancing needed ALLOW multiples ALLOW C ₂ H ₆ O for formula of ethanol IGNORE state symbols
6	(d)	(iv)	$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O \checkmark$	1	Correct species AND balancing needed ALLOW multiples, e.g. $3O_2 + 12H^+ + 12e^- \rightarrow 6H_2O_2 + 2H^+ + 2e^- \rightarrow H_2O$ ALLOW e (<i>ie</i> no $4/2ign$) ALLOW $O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$ OR $3O_2 + 6H_2O + 12e^- \rightarrow 12OH^-$ IGNORE state symbols

Q	Question			Answer	Marl	ks	Guidance
6	(d)	(v)	oxidation: C from –2 to +4	'+' sign not required ✓			ALLOW 2– and 4+ ALLOW $C^{2-} \rightarrow C^{4+}$
			reduction: O from 0 to -2	\checkmark	2		ALLOW 0 and 2– ALLOW $O^0 \rightarrow O^{2-}$
							ALLOW 1 mark if correct oxidation numbers shown for BOTH C and O but wrong way around (<i>ie</i> C on reduction line and O on oxidation line)
							IGNORE O ₂ reduced IGNORE any reference to electron transfer (<i>not in question</i>)
					Total 13	5	

Question	Answer		Guidance	
7 (a)	Equations can be in either order		ALLOW multiples throughout IGNORE state symbols	
	Na_2O + $H_2O \rightarrow 2NaOH \checkmark$		ALLOW Na ₂ O + H ₂ O \rightarrow 2Na ⁺ + 2OH ⁻	
			DO NOT ALLOW equations with uncancelled species. e.g. Na ₂ O + $2H_2O \rightarrow 2NaOH + H_2O$	
	NaFeO _{2 +} 2H ₂ O \rightarrow Fe(OH) _{3 +} NaOH \checkmark	2	ALLOW 2NaFeO ₂ + H ₂ O \rightarrow Fe ² O ₃ + 2NaOH OR 2 + H ₂ O \rightarrow Fe ² O ₃ + 2Na ⁺ + 2OH ⁻ \checkmark	
			OR $_2 + H_2O \rightarrow Fe_2O_3 + 3$	

2NaFeO

Question	Answer	Marks	Guidance
7 (b)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 33.7%, award 6 marks. IF there is an alternative answer, check to see if there is any ECF credit possible using working below amount $S_2O_3^{2-}$ used = 0.1000 × $\frac{25.50}{1000}$ = 2.550 × 10 ⁻³ (mol) \checkmark amount I_2 = 2.550 × 10 ⁻³ ÷ 2 1.275 × 10 ⁻³ (mol) \checkmark		FULL ANNOTATIONS MUST BE USED IF a step is omitted but subsequent step subsumes previous, then award mark for any missed step Working: at least 3 SF throughout until final % mark BUT ignore trailing zeroes, ie for 0.490 allow 0.49 ECF answer above ÷ 2
	amount CrO_4^{2-} 2 /3 × 1.275 × 10 ⁻³ OR 1.275 × 10 ⁻³ ÷ 1.5 = 8.5(00) × 10 ⁻⁴ (mol) ✓		ECF answer above ÷ 1.5
	amount CrO ₄ ²⁻ in original 1000 cm ³ = 40 × 8.5(00) × 10 ⁻⁴		ECF answer above × 40
	= $3.4(00) \times 10^{-2}$ mol \checkmark Mass of Cr/Cr ³⁺ in ore = $52.0 \times 3.4(00) \times 10^{-2}$ g	6	ECF answer above × 52.0 IMPORTANT : The last two marks are ONLY available by using 52.0 for Cr
	1.768 g ✓ Forcentage Cr in ore = $\frac{1.768}{5.25} \times 100$ = 33.7% ✓ MUST be to one decimal place (in the question)		Common ECFs: 0.8% x 40 missing5 marks (scaling error)0.84%x 40 missing4 marks (scaling error and 2 DP)33.68%5 marks (2 DP)16.8%5 marks (divide Cr somewhere by 2)
			144.9%; 72.5% 4 marks (Final 2 marks unavailable) Use of $M(Fe(CrO_2)_2) = 223.8$ instead of $M(Cr)$.

Question	Answer	Marks	Guidance
(c)	Overall: $_{4}^{2^{-}}$ + 3l ⁻ + 4H ₂ O → Cr ³⁺ + 1½ l ₂ + 8OH ⁻ ✓ CrO		ALLOW multiples and equilibrium signs throughout IGNORE state symbols throughout e.g. $2CrO_4^{2-} + 6l^- + 8H_2O \rightarrow 2Cr^{3+} + 3I_2 + 16OH^-$ ALLOW equation using H ⁺ . i.e. $CrO_4^{2-} + 3l^- + 8H^+ \rightarrow Cr^{3+} + 11/_2I_2 + 4H_2O$ OR $2CrO_4^{2-} + 6l^- + 16H^+ \rightarrow 2Cr^{3+} + 3I_2$ $+ 8H_2O$
	Half equations: $\begin{array}{cccc} & & & & & \\ & & & & & \\ & & & & & \\ & & & & $	3	ALLOW $\text{CrO}_4^{2^-}$ half equation using H ⁺ . i.e. $_4^{2^-}$ + 8H ⁺ + 3e ⁻ \rightarrow Cr ³⁺ + 4H ₂ O CrO
	Total	11	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

