General Certificate of Education June 2005 Advanced Level Examination

MATHEMATICS Unit Pure Core 3

MPC3

Friday 24 June 2005 Morning Session

In addition to this paper you will require:

- an 8-page answer book;
- the **blue** AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MPC3.
- Answer all questions.
- All necessary working should be shown; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75.
- Mark allocations are shown in brackets.

Advice

• Unless stated otherwise, formulae may be quoted, without proof, from the booklet.

P78437/0605/MPC3 6/6/6/ MPC3

Answer all questions.

1 (a) Find $\frac{dy}{dx}$ when $y = x \sin 2x$. (3 marks)

(b) (i) Find
$$\frac{dy}{dx}$$
 when $y = (x^2 - 6)^4$. (2 marks)

(ii) Hence, or otherwise, find
$$\int x(x^2-6)^3 dx$$
. (3 marks)

2 The functions f and g are defined with their respective domains by

$$f(x) = x - 2$$
 for all real values of x
 $g(x) = \frac{6}{x + 3}$ for real values of x , $x \neq -3$

The composite function fg is denoted by h.

(a) Find
$$h(x)$$
. (2 marks)

(b) (i) Find
$$h^{-1}(x)$$
, where h^{-1} is the inverse of h. (3 marks)

(ii) Find the range of
$$h^{-1}$$
. (1 mark)

3 (a) Find
$$\int e^{4x} dx$$
. (1 mark)

(b) Use integration by parts to find
$$\int e^{4x}(2x+1)dx$$
. (3 marks)

(c) By using the substitution
$$u = 1 + \ln x$$
, or otherwise, find $\int \frac{1 + \ln x}{x} dx$. (4 marks)

- 4 It is given that $\tan^2 x = \sec x + 11$.
 - (a) Show that the equation $\tan^2 x = \sec x + 11$ can be written in the form

$$\sec^2 x - \sec x - 12 = 0 \tag{2 marks}$$

- (b) Hence show that $\cos x = \frac{1}{4}$ or $\cos x = -\frac{1}{3}$. (3 marks)
- (c) Hence, or otherwise, solve the equation $\tan^2 x = \sec x + 11$, giving all values of x to the nearest degree in the interval $0^\circ < x < 360^\circ$. (3 marks)
- 5 (a) Solve the equation $2e^x = 5$, giving your answer as an exact natural logarithm. (2 marks)
 - (b) (i) By substituting $y = e^x$, show that the equation $2e^x + 5e^{-x} = 7$ can be written as

$$2y^2 - 7y + 5 = 0 (2 marks)$$

- (ii) Hence solve the equation $2e^x + 5e^{-x} = 7$, giving your answers as exact values of x. (3 marks)
- 6 (a) (i) Sketch the graph of $y = 4 x^2$, indicating the coordinates of the points where the graph crosses the coordinate axes. (2 marks)
 - (ii) The region between the graph and the x-axis from x = 0 to x = 2 is rotated through 360° about the x-axis. Find the exact value of the volume of the solid generated. (4 marks)
 - (b) (i) Sketch the graph of $y = |4 x^2|$. (2 marks)
 - (ii) Solve $|4 x^2| = 3$. (3 marks)
 - (iii) Hence, or otherwise, solve the inequality $|4 x^2| < 3$. (2 marks)

7 (a) Sketch the graph of $y = \tan^{-1} x$.

- (2 marks)
- (b) (i) By drawing a suitable straight line on your sketch, show that the equation $\tan^{-1} x = 2x 1$ has only one root. (2 marks)
 - (ii) Given that the root of this equation is α , show that $0.8 < \alpha < 0.9$. (2 marks)
- (c) Use the iteration $x_{n+1} = \frac{1}{2}(\tan^{-1}x_n + 1)$ with $x_1 = 0.8$ to find the value of x_3 , giving your answer to two significant figures. (3 marks)
- 8 The diagram shows part of the graph of $y = e^{2x} + 3$.

- (a) Describe a sequence of two geometrical transformations that maps the graph of $y = e^x$ onto the graph of $y = e^{2x} + 3$. (4 marks)
- (b) Use the mid-ordinate rule with four strips of equal width to find an estimate for the area of the shaded region A, giving your answer to three significant figures. (4 marks)
- (c) Find the exact value of the area of the shaded region A. (4 marks)
- (d) The region B is indicated on the diagram. Find the area of the region B, giving your answer in the form $pe^8 + qe^4$, where p and q are numbers to be determined. (4 marks)

END OF QUESTIONS