

## **GCE**

# **Chemistry A**

Unit F325: Equilibria, Energetics and Elements

Advanced GCE

Mark Scheme for June 2017

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2017

| Annotation   | Meaning                                                    |
|--------------|------------------------------------------------------------|
| DO NOT ALLOW | Answers which are not worthy of credit                     |
| IGNORE       | Statements which are irrelevant                            |
| ALLOW        | Answers that can be accepted                               |
| ()           | Words which are not essential to gain credit               |
| _            | Underlined words must be present in answer to score a mark |
| ECF          | Error carried forward                                      |
| AW           | Alternative wording                                        |
| ORA          | Or reverse argument                                        |

|   | Question |  | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Marks | Guidance                                                                                                                                                  |
|---|----------|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | (a)      |  | Formation of one mole of a(n ionic) compound ✓ from its gaseous ions ✓                                                                                                                                                                                                                                                                                                                                                                                                                 | 2     | IGNORE 'Energy needed' OR 'energy required' For 'compound', ALLOW: lattice, crystal, substance, solid                                                     |
|   |          |  | IGNORE standard conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | Special case: 1 mark for gaseous ions ONLY 'Formation of 1 mole of compound from 1 mole of gaseous ions.' Duplicate 1 mole is a CON for 1st marking point |
| 1 | (b)      |  | FULL ANNOTATIONS MUST BE USE  For ALL marking points, assume the following:  • For 'ions', ALLOW 'atoms', e.g. Na has a larger (atomic) radius  • For Mg²+, Na+, Br⁻ and Cl⁻, ALLOW symbols: e.g. Mg, Na, Br and Cl  • ALLOW names: e.g. magnesium, sodium, bromine, bromide, chlorine, chloride  • DO NOT ALLOW 'composite' particles, e.g. 'magnesium bromide/MgBr₂ has a larger ionic radius'  DO NOT ALLOW molecules  IGNORE idea of close packing of ions  IGNORE electronegative |       |                                                                                                                                                           |

| Question | Answer                                                                                                                                 | Marks | Guidance                                                                                                                  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------|
|          | Comparing cation size AND charge (ORA based on Na <sup>+</sup> )                                                                       | 3     | ALLOW reverse argument throughout (ORA)                                                                                   |
|          | Mg <sup>2+</sup> is smaller <b>AND</b> Mg <sup>2+</sup> has a greater charge <b>OR</b> Mg <sup>2+</sup> has a greater charge density ✓ |       | For 'greater charge' part of mark,  ALLOW Mg <sup>2+</sup> AND Na <sup>+</sup> seen anywhere  ALLOW Mg is 2+ AND Na is 1+ |
|          | Comparing of anion size (ORA based on CF)  Br is larger                                                                                |       | IGNORE just Mg <sup>2+</sup> is small comparison required                                                                 |
|          | OR  Br⁻ has a smaller charge density ✓                                                                                                 |       | IGNORE just Br⁻ is large comparison required                                                                              |
|          | Comparing cation ⇔ anion attraction  Mg <sup>2+</sup> has stronger attraction                                                          |       | ALLOW pull for attraction                                                                                                 |
|          | AND                                                                                                                                    |       | ALLOW 'attracts with more force' for greater attraction                                                                   |
|          | Cl⁻ has stronger attraction ✓                                                                                                          |       | BUT IGNORE just 'greater force' (could be repulsion) OR comparison of bond strength/energy to break bonds                 |
|          | IGNORE 'nuclear' attraction                                                                                                            |       | IGNORE comparisons of numbers of ions                                                                                     |

| Q | uesti | ion | Answer                                                          | Marks | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---|-------|-----|-----------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | (c)   | (i) | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$          | 6     | Correct species <b>AND</b> state symbols required for marks on dotted lines <b>ALLOW</b> e for e <sup>-</sup> <b>TAKE CARE</b> : e <sup>-</sup> may be in centre of response and more difficult to see than at end, e.g. $Mg^+(g) + e^- + 2Br(g)$ <b>ONE</b> correct response for each line <b>Mark each marking point independently</b> No <b>ECF</b> except for (g) and (s) state symbol of $Br_2(l)$ i.e.: $Mg(g) + Br_2(g) \qquad \checkmark \text{ ECF}$ $\uparrow \qquad Mg(s) + Br_2(s) \qquad \checkmark \text{ ECF}$ $\uparrow \qquad Mg(s) + Br_2(s) \qquad \checkmark \text{ ECF}$ $\uparrow \qquad Mg(s) + Br_2(s) \qquad \checkmark \text{ ECF}$ $\downarrow \qquad Mg(s) + Br_2(s) \qquad \checkmark \text{ ECF}$ $\downarrow \qquad Mg(s) + Br_2(s) \qquad \checkmark \text{ ECF}$ $\downarrow \qquad Mg(s) + Br_2(s) \qquad \checkmark \text{ ECF}$ $\downarrow \qquad Mg(s) + Br_2(s) \qquad \checkmark \text{ ECF}$ $\downarrow \qquad Mg(s) + Br_2(s) \qquad \checkmark \text{ ECF}$ $\downarrow \qquad Mg(s) + Br_2(s) \qquad \checkmark \text{ ECF}$ $\downarrow \qquad Mg(s) + Br_2(s) \qquad \checkmark \text{ ECF}$ $\downarrow \qquad Mg(s) + Br_2(s) \qquad \checkmark \text{ ECF}$ $\downarrow \qquad Mg(s) + Br_2(s) \qquad \checkmark \text{ ECF}$ $\downarrow \qquad Mg(s) + Br_2(s) \qquad \checkmark \text{ ECF}$ $\downarrow \qquad Mg(s) + Br_2(s) \qquad \checkmark \text{ ECF}$ $\downarrow \qquad Mg(s) + Br_2(s) \qquad \checkmark \text{ ECF}$ $\downarrow \qquad Mg(s) + Br_2(s) \qquad \checkmark \text{ ECF}$ $\downarrow \qquad Mg(s) + Br_2(s) \qquad \checkmark \text{ ECF}$ $\downarrow \qquad Mg(s) + Br_2(s) \qquad \checkmark \text{ ECF}$ $\downarrow \qquad Mg(s) + Br_2(s) \qquad \checkmark \text{ ECF}$ $\downarrow \qquad Mg(s) + Br_2(s) \qquad \checkmark \text{ ECF}$ $\downarrow \qquad Mg(s) + Br_2(s) \qquad \checkmark \text{ ECF}$ |
|   |       |     | 5 marks for species AND state symbols on the dotted lines ✓✓✓✓✓ |       | $Mg(g) + Br_2(aq)$ *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   |       |     | 1 mark for ALL 4 correct letters in boxes ✓                     |       | $Mg(s) + Br_2(aq)$ *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   |       |     | Place tick or cross by top right letter (E when correct)  6     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Question   | Answer                                                                                         | Marks | Guidance                                                                                     |
|------------|------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------|
| 1 (c) (ii) | FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -2433 (kJ mol <sup>-1</sup> ) award 2 marks | 2     | For alternative answers, ALLOW ECF  See list below for marking of answers from common errors |
|            | Total                                                                                          | 13    |                                                                                              |

| ( | Question | Answer                                                                                  | Marks | Guidance                                                                                                                                                                                                                |
|---|----------|-----------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | (a)      | positive <b>OR</b> + <b>AND</b> solid forms liquid <b>OR</b> liquid has more disorder ✓ | 3     | For 'liquid has more disorder': <b>ALLOW</b> liquid has more ways of arranging energy/ more freedom/ more random molecules                                                                                              |
|   |          | positive <b>OR</b> + <b>AND</b> gas (H₂) forms <b>OR</b> Mg dissolves/disappears ✓      |       | ASSUME gas is H <sub>2</sub> unless otherwise stated BUT DO NOT ALLOW an incorrect gas (e.g. CO <sub>2</sub> ) IGNORE liquid forms IGNORE equation with state symbols Response should communicate why entropy increases |
|   |          | negative OR – AND 9 mol gas form 4 mol gas OR forms 5 fewer mol of gas ✓                |       | Numbers and gas are essential  IGNORE 'forms fewer moles of gas'  For mol, ALLOW molecules  IGNORE numbers around equation  Treated as rough working                                                                    |

| Question Answer Marks Guid |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Guidance   |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Question 2 (b)             | FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 185 (J K <sup>-1</sup> mol <sup>-1</sup> ) award 2 marks  Conversion of ${}^{9}C$ to K  AND substitution of values into $\Delta G = \Delta H - T\Delta S$ $-1041 = -907 - 723 \times \Delta S \checkmark$ Calculation of $\Delta S$ AND conversion to $J$ K <sup>-1</sup> mol <sup>-1</sup> $\Delta S = \frac{1041 - 907}{723} \times 1000 = \frac{134}{723} \times 1000$ $= 185 \text{ OR } 185.3 \text{ (J K}^{-1} \text{ mol}^{-1}) \checkmark$ ALLOW 3 SF up to calc value of 185.3388658 correctly rounded | Marks<br>2 | Conversion to J may be carried out at start but no mark JUST for this conversion  ALLOW ECF ONLY from use of values from question:  (-)907 AND (-)1041 AND 450/723  COMMON ERRORS  -185 wrong sign 1 mark  0.185 no conversion from kJ to J 1 mark  1.85 × 10 <sup>-4</sup> ÷ by 1000 instead of × 1 mark  298/297.8 (calc 297.7 recurring)  Use of 450 °C instead of 723 K 1 mark  -2694 wrong sign for 1041 1 mark  -2694 wrong sign for 907 1 mark |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | ±4329 Wrong sign AND 450°C 0 marks                                                                                                                                                                                                                                                                                                                                                                                                                    |

|   | Question | Answer                                                                                                                                                                                                                                                                     | Marks | Guidance                                                                                                                                                                                                                                |
|---|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | (c)      | Signs of $\Delta H$ and $\Delta S$<br>$\Delta H$ is positive AND $\Delta S$ is positive $\checkmark$                                                                                                                                                                       | 3     | <b>FULL ANNOTATIONS MUST BE USED ALLOW</b> $\Delta H$ is endothermic for $\Delta H$ is positive                                                                                                                                         |
|   |          | $T$ ∆ $S$ and temperature 'Value of' $T$ ∆ $S$ increases with temperature $\checkmark$                                                                                                                                                                                     |       | IGNORE sign of TΔS (treated as  TΔS ) i.e. ALLOW TΔS becomes more/less positive OR TΔS becomes more/less negative  IGNORE ΔS increases with temperature                                                                                 |
|   |          | <b>Feasibility</b> At high temperatures, $\Delta G$ is –ve <b>OR</b> $\Delta G$ < 0 <b>AND</b> At low temperatures, $\Delta G$ is +ve <b>OR</b> $\Delta G$ > 0                                                                                                             |       | <b>ONLY</b> award feasibility mark if signs of $\Delta H$ and $\Delta S$ are correct, i.e. $\Delta H$ +ve <b>AND</b> $\Delta S$ +ve (1st marking point)                                                                                 |
|   |          | <b>OR</b> $\Delta H - T\Delta S$ decreases with (increasing) temperature <b>OR</b> $\Delta H - T\Delta S$ from +ve to –ve with (increasing) temperature $\checkmark$ <b>OR</b> the idea: As temperature increases, $T\Delta S$ outweighs $\Delta H$ to make $\Delta G < 0$ |       | <b>ALLOW</b> $\Delta H - T\Delta S$ for $\Delta G$ , e.g. At high temperatures, $\Delta H - T\Delta S < 0$ <b>OR</b> $\Delta H < T\Delta S$ <b>AND</b> At low temperatures, $\Delta H - T\Delta S > 0$ <b>OR</b> $\Delta H > T\Delta S$ |
|   | <u> </u> | Total                                                                                                                                                                                                                                                                      | 8     |                                                                                                                                                                                                                                         |

| ( | Questi | on | Expected answers                                                                                                                                                                                                                                                           |                                                                                                                                           |                | Marks | Additional guidance                                                                                                                                                                                                                                                       |
|---|--------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | (a)    |    | NO: 2 /Second  AND H₂: 1 /First  AND Overall: 3 /Third ✓                                                                                                                                                                                                                   |                                                                                                                                           | 1              |       |                                                                                                                                                                                                                                                                           |
| 3 | (b)    |    | rate × 125 ✓                                                                                                                                                                                                                                                               |                                                                                                                                           |                | 1     | <b>DO NOT ALLOW</b> just 'increases by 5 and then by 25 / 5 <sup>2</sup> <b>OR</b> increases by 5 <sup>3</sup>                                                                                                                                                            |
| 3 | (c)    |    | FIRST, CHECK THE AN IF answer = $7.59 \times 10^4$ at THEN IF units are dm <sup>6</sup> in Initial working $k = \frac{1}{(3.24 \times 10^4)^4}$ OR 75858.31764  3 SF and standard form = $7.59 \times 10^4$ ✓  units:  dm <sup>6</sup> mol <sup>-2</sup> s <sup>-1</sup> ✓ | ward <b>2 marks</b> nol <sup>-2</sup> s <sup>-1</sup> , award $\frac{4.34 \times 10^{-2}}{(\times 10^{-3})^2 \times 5.45 \times 10^{-3}}$ | 1 further mark | 3     | <b>NO ECF</b> from incorrectly rearranged $k$ expression <b>ALLOW</b> $\text{mol}^{-2}$ $\text{dm}^6$ $\text{s}^{-1}$ <b>OR</b> any order <b>DO NOT ALLOW</b> other units from incorrect $k$ expression (Rate equation supplied on paper – <b>not</b> derived from data ) |
| 3 | (d)    |    | Change                                                                                                                                                                                                                                                                     | Effect on rate                                                                                                                            | Effect on k    | 2     |                                                                                                                                                                                                                                                                           |
|   |        |    | Increase in pressure                                                                                                                                                                                                                                                       | increases                                                                                                                                 | none           |       | ALL boxes are 'increases' EXCEPT top right is 'none'.                                                                                                                                                                                                                     |
|   |        |    | Increase in temperature                                                                                                                                                                                                                                                    | increases                                                                                                                                 | increases      |       |                                                                                                                                                                                                                                                                           |
|   |        |    | Mark by <b>column</b> :                                                                                                                                                                                                                                                    | ✓                                                                                                                                         | ✓              |       |                                                                                                                                                                                                                                                                           |

| ( | Question | Expected answers                                                     |   | Additional guidance                                       |
|---|----------|----------------------------------------------------------------------|---|-----------------------------------------------------------|
|   |          |                                                                      |   |                                                           |
| 3 | (e)      | Overall equation must be sum of step 1 and step 2                    | 2 |                                                           |
|   |          | step 1: $H_2(g) + 2 NO(g) \rightarrow N_2O(g) + H_2O(g) \checkmark$  |   | IGNORE any state symbols                                  |
|   |          | overall: $2NO(g) + 2H_2(g) \rightarrow N_2(g) + 2H_2O(g) \checkmark$ |   | For other possible correct responses, contact Team Leader |
|   |          | NO ECF for from incorrect step 1 equation                            |   |                                                           |
|   |          | Total                                                                | 9 |                                                           |

|   | Questi | ion  | Answer                                                                                                                                                                                            | Marks | Guidance                                                                                                                                                                                                                              |
|---|--------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | (a)    | (i)  | Note: Examples must be for V, not other d block elements                                                                                                                                          | 4     | FULL ANNOTATIONS MUST BE USED                                                                                                                                                                                                         |
|   |        |      | d block element:<br>(3)d is highest energy sub-shell/orbital ✓                                                                                                                                    |       | DO NOT ALLOW highest energy shell                                                                                                                                                                                                     |
|   |        |      | Transition element: has an ion with incomplete/partially-filled d sub-shell/orbital ✓                                                                                                             |       |                                                                                                                                                                                                                                       |
|   |        |      | <b>V</b><br>1s²2s²2p <sup>6</sup> 3s²3p <sup>6</sup> 3d³4s² ✓<br><b>full</b> electron configuration required                                                                                      |       | <b>ALLOW</b> 4s before 3d, ie 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>6</sup> 4s <sup>2</sup> 3d <sup>3</sup> <b>ALLOW</b> upper case D, etc and subscripts, e.g. [Ar]4S <sub>2</sub> 3D <sub>8</sub> |
|   |        |      | <b>V<sup>2+</sup>:</b><br>1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>6</sup> 3d <sup>3</sup> ✓<br><b>full</b> electron configuration required                        |       | DO NOT ALLOW USE OF [Ar] for 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>6</sup> for configuration of V and V <sup>2+</sup> ALLOW electron configuration with 4s <sup>0</sup>                             |
| 4 | (a)    | (ii) | $VO_3^- + 6H^+ + 3e^- \longrightarrow V^{2+} + 3H_2O\checkmark$                                                                                                                                   | 3     | ALLOW multiples                                                                                                                                                                                                                       |
|   |        |      | $Zn \longrightarrow Zn^{2+} + 2e^{-\checkmark}$                                                                                                                                                   |       | NO ECF from incorrect half equations  ALLOW multiples, e.g.                                                                                                                                                                           |
|   |        |      | $2 \text{ VO}_3^- + 12 \text{ H}^+ + 3 \text{ Zn} \longrightarrow 2 \text{ V}^{2+} + 6 \text{ H}_2\text{O} + 3 \text{ Zn}^{2+} \checkmark$ Multiples of this equation are the ONLY correct answer |       | $VO_3^- + 6 H^+ + 1\frac{1}{2} Zn \longrightarrow V^{2+} + 3 H_2O + 1\frac{1}{2} Zn^{2+}$                                                                                                                                             |
|   |        |      |                                                                                                                                                                                                   |       |                                                                                                                                                                                                                                       |

| ( | Question |       | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Marks | Guidance                                                                                                                                                                                                                                                                                                                                                    |
|---|----------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | (b)      | (i)   | Pt: Pt <sup>2+</sup> <b>OR</b> +2/2+<br><b>AND</b><br>Cl: 2 × Cl <sup>-</sup> <b>OR</b> 2 × −1 <b>OR</b> 2 Cl <sup>-</sup> /Cl with oxidation number −1 ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1     | DO NOT ALLOW response in terms of 'Cl <sub>2</sub> 'or 'Cl molecule', rather than Cl <sup>-</sup> DO NOT ALLOW 'charges cancel' without the charges/oxidation numbers involved being stated  DO NOT ALLOW if NH <sub>3</sub> shown to have charge                                                                                                           |
| 4 | (b)      | (ii)  | H <sub>3</sub> NPtNH <sub>3</sub> H <sub>3</sub> NCI CI CI CI NH <sub>3</sub> OR  NH <sub>3</sub> CI Pt CI CI NH <sub>3</sub> CI Pt CI NH <sub>3</sub> NH <sub></sub> | 3     | IGNORE any charge, i.e. Pt <sup>2+</sup> OR Cl <sup>-</sup> , even if wrong  Bonds MUST go to N of to NH <sub>3</sub> IGNORE labelled bond angles (even if wrong)  DO NOT ALLOW any structure that cannot be in one plane  If ligands are orientated correctly in <i>cis</i> AND <i>trans</i> , but connectivity to N is poor ALLOW 1 mark for two diagrams |
| 4 | (b)      | (iii) | cis-platin binds to DNA (of cancer cells) OR cis-platin stops (cancer) cells dividing/replicating ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1     | ALLOW cis-isomer: cis is essential  IGNORE simply 'cis-platin used in cancer treatment'                                                                                                                                                                                                                                                                     |

| Question | Answer                                                                                                                                  | Marks | Guidance                                                                                                                                                                                                                     |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 (c)    |                                                                                                                                         | 7     | FULL ANNOTATIONS MUST BE USED ALLOW equilibrium signs in all equations IGNORE state symbols IGNORE an incorrect formula for an observation                                                                                   |
|          | Colour of Co <sup>2+</sup> (aq) OR [Co(H₂O) <sub>6</sub> ] <sup>2+</sup> 1 mark Pink solution seen at least once AND not contradicted ✓ |       | ALLOW 'Co <sup>2+</sup> (aq) is pink' or similar wording                                                                                                                                                                     |
|          | REACTION OF Co <sup>2+</sup> with NaOH(aq) 3 marks                                                                                      |       | (aq) <b>OR</b> [Co(H <sub>2</sub> O) <sub>6</sub> ] <sup>2+</sup> is equivalent to 'solution' <b>DO NOT ALLOW</b> pink <b>precipitate</b>                                                                                    |
|          | Correct equation $Co^{2+}(aq) + 2OH^{-}(aq) \longrightarrow Co(OH)_{2}(s) \checkmark$ state symbols <b>not</b> required                 |       | <b>ALLOW</b> $[Co(H_2O)_6]^{2+} + 2OH^- \rightarrow Co(OH)_2(H_2O)_4 + 2H_2O$<br><b>ALLOW</b> 'hybrid' equations,<br>e.g. $Co^{2+} + 2NaOH \rightarrow Co(OH)_2 + 2Na^+$                                                     |
|          | Observation blue precipitate/solid ✓  Type of reaction                                                                                  |       | $[Co(H_2O)_6]^{2+} + 2OH^- \rightarrow Co(OH)_2 + 6H_2O$ <b>ALLOW</b> any shade of blue <b>IGNORE</b> changes in colour over time                                                                                            |
|          | precipitation ✓                                                                                                                         |       | DO NOT ALLOW 'precipitate reaction'  IF equation with [Co(H₂O) <sub>6</sub> ]²+ has been shown,  ALLOW acid–base OR neutralisation                                                                                           |
|          | REACTION OF Co <sup>2+</sup> WITH HCl(aq) 3 marks                                                                                       |       |                                                                                                                                                                                                                              |
|          | Correct equation $ [Co(H_2O)_6]^{2^+} + 4CI^- \longrightarrow [CoCl_4]^{2^-} + 6H_2O \checkmark $                                       |       | <b>ALLOW</b> $CoCl_4^{2-}$ i.e. no brackets <b>OR</b> $Co(Cl)_4^{2-}$<br><b>ALLOW</b> $[Co(H_2O)_6]^{2+} + 4HCl \longrightarrow [CoCl_4]^{2-} + 6H_2O + 4H^+$<br><b>IGNORE</b> $Co^{2+} + 4Cl^- \longrightarrow CoCl_4^{2-}$ |
|          | Observation blue (solution) ✓                                                                                                           |       | ALLOW any shades of blue DO NOT ALLOW blue precipitate                                                                                                                                                                       |
|          | Type of reaction ligand substitution ✓                                                                                                  |       | ALLOW ligand exchange                                                                                                                                                                                                        |

| Question | Answer | Marks | Guidance |
|----------|--------|-------|----------|
|          | Total  | 19    |          |

| ( | Question |      | Answer                                                                                                           | Marks | Guidance                                                                                                                                |
|---|----------|------|------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 5 | (a)      | (i)  | partlially dissociates ✓                                                                                         | 1     | For dissociates, <b>ALLOW</b> ionises                                                                                                   |
| 5 | (a)      | (ii) | $(K_a =) \frac{[H^+(aq)[CH_3COO^-(aq)]}{[CH_3COOH(aq)]} \checkmark$ All species <b>MUST</b> have square brackets | 1     | ALLOW [H <sub>3</sub> O <sup>+</sup> ] for [H <sup>+</sup> ]  IGNORE $\frac{[H^+]^2}{[C_2H_5COOH]} \text{ OR } \frac{[H^+][A^-]}{[HA]}$ |
|   |          |      |                                                                                                                  |       | IGNORE state symbols                                                                                                                    |

| ( | Quest | ion   | Answer                                                                                                                        | Marks | Guidance                                                                                                 |
|---|-------|-------|-------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------|
| 5 | (a)   | (iii) | FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 3.22, award 2 marks                                                        | 2     |                                                                                                          |
|   |       |       | $[H^+] = \sqrt{(1.30 \times 10^{-5}) \times (2.85 \times 10^{-2})}$                                                           |       |                                                                                                          |
|   |       |       | <b>OR</b> 6.09 × 10 <sup>-4</sup> (mol dm <sup>-3</sup> ) ✓                                                                   |       | <b>ALLOW</b> $6.09 \times 10^{-4}$ to calculator value of $6.086871117 \times 10^{-4}$ correctly rounded |
|   |       |       | pH = -log 6.09 × 10 <sup>-4</sup> = <b>3.22</b> ✓                                                                             |       | <b>ALLOW ECF</b> from incorrect [H <sup>+</sup> ] derived from $K_a$ <b>AND</b> [H <sup>+</sup> ]        |
|   |       |       | Must be from a calculated [H <sup>+</sup> ]                                                                                   |       | <b>ALLOW</b> use of quadratic equation – gives same answer of 3.22                                       |
|   |       |       | <b>NOTE</b> : The marks are <b>ONLY</b> available from attempted use of $K_a$ <b>AND</b> [C <sub>2</sub> H <sub>5</sub> COOH] |       | COMMON ERRORS (MUST be to 2 DP) Mark other errors by ECF                                                 |
|   |       |       |                                                                                                                               |       | pH = 6.43 1 mark<br>$-\log (1.30 \times 10^{-5}) \times (2.85 \times 10^{-2})$ No $\sqrt{}$              |
|   |       |       |                                                                                                                               |       | pH = 3.16 1 mark<br>Wrong acid ( $K_a = 1.70 \times 10^{-5}$ ) but all else correct                      |
|   |       |       |                                                                                                                               |       | pH = 4.89 0 marks<br>$-\log(1.30 \times 10^{-5}) = 4.89$ $-\log K_a$                                     |
|   |       |       |                                                                                                                               |       | pH = 1.55 0 marks<br>$-\log(2.85 \times 10^{-2}) = 4.87$ $-\log [H^+]$                                   |
|   |       |       |                                                                                                                               |       |                                                                                                          |

| C | Questi | ion  | Answer                                                                                                                                                                                                                                                                                                                       | Marks | Guidance                                                                             |
|---|--------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------|
| 5 | (a)    | (iv) | $C_2H_5COOH + CH_3COOH \Rightarrow C_2H_5COOH_2^+ + CH_3COO^-\checkmark$                                                                                                                                                                                                                                                     | 2     | <b>ALLOW ECF</b> for 2nd mark if H <sup>+</sup> transfer shown other way round, i.e. |
|   |        |      | Base 2 Acid 1 Acid 2 Base 1 $\checkmark$ 1st mark for correct products, $C_2H_5COOH_2^+$ AND $CH_3COO^-$                                                                                                                                                                                                                     |       | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                 |
|   |        |      | 2nd mark for correct labels                                                                                                                                                                                                                                                                                                  |       | ALLOW A1, B1, etc or any unambiguous labels                                          |
| 5 | (b)    | (i)  | proton/H <sup>+</sup> acceptor ✓                                                                                                                                                                                                                                                                                             | 1     | DO NOT ALLOW OH <sup>-</sup> donor                                                   |
| 5 | (b)    | (ii) | FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 5.35 (g) award 3 marks $n(Ba(OH)_2) = (250/1000) \times 0.1250 = 0.03125 \text{ (mol)} \checkmark$ $M(Ba(OH)_2) = 171.3 \text{ (g mol}^{-1}) \checkmark$ mass = $0.03125 \times 171.3 = 5.35 \text{ (g)} \checkmark$ <b>NOTE</b> : Answer to <b>two</b> decimal places | 3     | ALLOW ECF but answer required to two decimal places                                  |

|   | Question |       | Answer                                                                                                                                                                                                                                                                                                                                       | Marks | Guidance                                                                                                                                                                                                                                                                                                      |
|---|----------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | (b)      | (iii) | FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 13.40 award 3 marks                                                                                                                                                                                                                                                                       | 3     | Marks are for correctly calculated values. Working shows how values have been derived.                                                                                                                                                                                                                        |
|   |          |       | [OH <sup>-</sup> ] = 2 × 0.1250 = 0.25(0) (mol dm <sup>-3</sup> ) $\checkmark$<br>[H <sup>+</sup> ] = $\frac{1.00  10^{-14}}{0.25(0)}$ <b>OR</b> 4(.00) × 10 <sup>-14</sup> (mol dm <sup>-3</sup> ) $\checkmark$<br>Subsumes 1st mark<br>pH = $-\log 4.00 \times 10^{-14} = 13.40 \checkmark$<br>Must be from a calculated [H <sup>+</sup> ] |       | ALLOW by ECF $\frac{1.00 \cdot 10^{-14}}{\text{calculated value of [OH]}}$ DO NOT ALLOW 13.4 not two decimal places                                                                                                                                                                                           |
|   |          |       | pOH variation (also worth 3 marks) [OH⁻] = 2 × 0.125 = 0.25(0) (mol dm⁻³) ✓  pOH = -log 0.25(0) = 0.60 ✓  pH = 14.00 - 0.60 = 13.40 ✓  Must be from a calculated pOH                                                                                                                                                                         |       | COMMON ERRORS for pH  13.4 $\checkmark \checkmark$ not 2 DP  13.10 $\checkmark \checkmark$ no × 2 for [OH]  13.1 $\checkmark$ no × 2 for [OH] <b>AND</b> 1 DP only  12.80 $\checkmark \checkmark$ ÷2 instead of × 2 for [OH]  0.60 $\checkmark$ 2 × 0.1250 expressed as pH  0.90 <b>no marks</b> $-log$ 0.125 |

| Question | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Marks | Guidance                                                                                                                                                                                                                                                                                                                               |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 (c)    | Possible conclusion from mixing $C_2H_5COOH$ and $Ba(OH)_2$ Buffer forms when  • acid / $C_2H_5COOH$ is in excess  • OR buffer contains $C_2H_5COOH$ AND $C_2H_5COO^-$ / $(C_2H_5COO)_2Ba\checkmark$ Independent of calculations $n(Ba(OH)_2)$ $= (100/1000) \times 0.1250 = 0.0125 \text{ (mol)} \checkmark$ $n(C_2H_5COOH)$ $= (200/1000) \times 0.324 = 0.0648 \text{ (mol)} \checkmark$ Correct calculation showing that $C_2H_5COOH$ is in excess Must use $2 \times 0.0125$ OR $0.0250 \checkmark$ Possible calculations could show: • $C_2H_5COOH$ is $0.0398$ mol in excess  • ratio $n(C_2H_5COOH)/n(Ba(OH)_2 > 2/1$ • $n(C_2H_5COOH) > n(OH^-)$ | 4     | Buffer does <b>not</b> form when  • acid / C₂H₅COOH is <b>not</b> in excess/ Ba(OH)₂ is in excess  • <b>OR</b> buffer does <b>not</b> contains C₂H₅COOH <b>AND</b> C₂H₅COO⁻//(C₂H₅COO)₂Ba ✓ $n(C₂H₅COOH) = 0.0648 - 0.0250 = 0.0398$ ratio $n(C₂H₅COOH)/n(Ba(OH)₂) = 0.0648/0.0125 = 5.184/1$ $n(C₂H₅COOH) > n(OH⁻) = 0.0648 > 0.0250$ |

| C | Question | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Marks   | Guidance                                                                                                                                                                                                                                                                                                                                                           |
|---|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | (d)      | <ul> <li>Quality of written communication, QWC</li> <li>2 marks are available for explaining how the equilibrium system allows the buffer solution to control the pH on addition of H<sup>+</sup> and OH<sup>-</sup> (see below)</li> <li>H<sub>2</sub>CO<sub>3</sub> ≠ H<sup>+</sup> + HCO<sub>3</sub><sup>-</sup> ✓</li> </ul>                                                                                                                                                                      | Marks 5 | FULL ANNOTATIONS MUST BE USED  Note: If there is no equilibrium equation then the two subsequent equilibrium marks are not available: max 2  DO NOT ALLOW HA = H <sup>+</sup> + A <sup>-</sup> DO NOT ALLOW more than one equilibrium equation.                                                                                                                    |
|   |          | <ul> <li>H<sub>2</sub>CO<sub>3</sub> reacts with added alkali /OH<sup>-</sup></li> <li>OR H<sub>2</sub>CO<sub>3</sub> + OH<sup>-</sup> →</li> <li>OR added alkali reacts with H<sup>+</sup></li> <li>OR H<sup>+</sup> + OH<sup>-</sup> → ✓</li> <li>Equilibrium → right OR Equilibrium → HCO<sub>3</sub><sup>-</sup> ✓ (QWC)</li> <li>HCO<sub>3</sub><sup>-</sup> reacts with added acid /H<sup>+</sup> ✓</li> <li>Equilibrium → left OR Equilibrium → H<sub>2</sub>CO<sub>3</sub> ✓ (QWC)</li> </ul> |         | ALLOW response in terms of H <sup>+</sup> , A <sup>-</sup> and HA  IF more than one equilibrium shown, it must be clear which one is being referred to by labeling the equilibria.  ALLOW weak acid reacts with added alkali DO NOT ALLOW acid reacts with added alkali  ALLOW conjugate base reacts with added acid DO NOT ALLOW salt/base reacts with added acid |
|   | l I      | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22      |                                                                                                                                                                                                                                                                                                                                                                    |

| Question |     | ion | Answer                                              | Marks | Guidance                                      |
|----------|-----|-----|-----------------------------------------------------|-------|-----------------------------------------------|
| 6        | (a) |     | $(K_c = ) \frac{[NH_3]^2}{[N_2][H_2]^3} \checkmark$ | 1     | Must be square brackets  IGNORE state symbols |

| Question | Answer                                                                                                                                                                                                                                                                                                                                 | Marks | Guidance                                                                                                                                                                                                                                   |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6 (b)    | FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = $0.0368 \text{ dm}^6 \text{ mol}^{-2}$ , award 6 marks IF answer = $0.0368 \text{ with incorrect units, award 5 mark}$ Equilibrium amounts in mol $n(N_2) = 10.40 - 5.60/2 = 7.6(0) \text{ (mol)} \checkmark$ $n(H_2) = 22.50 - 1.5 \times 5.60 = 14.1(0) \text{ (mol)} \checkmark$ | 6     | FULL ANNOTATIONS NEEDED  IF there is an alternative answer, check to see if there is any ECF credit possible using working below                                                                                                           |
|          | Equilibrium concentrations (moles ÷ 5) 1 MARK $N_2 = 7.60/5 = 1.52 \pmod{\text{mol dm}^{-3}}$ AND $H_2 = 14.1/5 = 2.82 \pmod{\text{mol dm}^{-3}}$ AND $NH_3 = 5.60/5 = 1.12 \pmod{\text{mol dm}^{-3}}$                                                                                                                                 |       | <b>ALLOW ECF</b> from incorrect moles of SO <sub>2</sub> , O <sub>2</sub> <b>AND</b> SO <sub>2</sub> <b>ALL three</b> concentrations required for this mark                                                                                |
|          | Calculation of $K_c$ and units 3 MARKS $K_c = \frac{1.12^2}{1.52 \times 2.82^3} \checkmark$                                                                                                                                                                                                                                            |       | ALLOW ECF from incorrect concentrations or moles (if concentration stage is omitted)                                                                                                                                                       |
|          | $K_c = 0.0368 \checkmark$ dm <sup>6</sup> mol <sup>-2</sup> $\checkmark$ 3SF required                                                                                                                                                                                                                                                  |       | <b>ALLOW ECF</b> from wrong $K_c$ expression for $K_c$ value and units For units, <b>ALLOW</b> mol <sup>-2</sup> dm <sup>6</sup> <b>DO NOT ALLOW</b> dm <sup>6</sup> /mol <sup>2</sup>                                                     |
|          | <b>NOTE</b> : If inverted $K_c$ expression used, look back to Q6(a) Then apply ECF with ALL marks being available in 16(b). Expected answer = 27.2 Expected units = $\text{mol}^2 \text{ dm}^{-6}$ See also Common errors                                                                                                              |       | Common errors for $K_c$ 1.47 × 10 <sup>-3</sup> missing ÷ 5 to calculate concentrations 4 marks + units mark (i.e. just one mark dropped)  0.0338  Subtracting 5.60 from initial moles of $N_2$ and $H_2$ 3 marks + units mark             |
|          |                                                                                                                                                                                                                                                                                                                                        |       | 6.62 × 10 <sup>-3</sup> Use of initial concentrations of N₂ and H₂  (3 marks + units mark)  2.65 × 10 <sup>-4</sup> Use of initial moles of N₂ and H₂ and no ÷5 for concs  (2 marks + units mark)  27.2  Calculated value from inverted K₀ |
|          | 24                                                                                                                                                                                                                                                                                                                                     |       | 4 marks + units mark for mof dm-6                                                                                                                                                                                                          |

| ( | Question |      | Answer                                                                                                                                          | Marks | Guidance                                                                                                                                                 |
|---|----------|------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6 | (c)      | (i)  | $K_c$ is smaller <b>AND</b> (forward) reaction is <b>exothermic OR</b> $\Delta H$ is negative $\checkmark$                                      | 1     | Link to $\Delta H$ /exothermic essential <b>ALLOW reverse</b> reaction is <b>endothermic DO NOT ALLOW</b> equilibrium shifts to the right ( <b>CON</b> ) |
| 6 | (c)      | (ii) | $K_c$ is the same <b>AND</b> $K_c$ is temperature dependent/only changed by temperature <b>OR</b> $K_c$ is not changed by pressure $\checkmark$ | 1     | <b>ALLOW</b> $K_c$ is <b>only</b> changed by temperature <b>IGNORE</b> same number of moles on both side                                                 |
|   |          |      | Total                                                                                                                                           | 9     |                                                                                                                                                          |

|   | Questi | ion   | Answer                                                                                                                                  | Marks | Guidance                                                                                                                                                  |
|---|--------|-------|-----------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7 | (a)    | (i)   | complete circuit with voltmeter  AND salt bridge linking two half-cells ✓                                                               | 4     | FULL ANNOTATIONS MUST BE USED circuit shown must be complete, ie must be capable of working salt bridge must be labelled and must dip into both solutions |
|   |        |       | Cr electrode in Cr³+ solution ✓  Pt electrode in solution containing Fe²+ <b>AND</b> Fe³+ ✓                                             |       | Half cells can be drawn in either order Half cells must show electrodes dipping into solutions ALLOW small gaps in circuit                                |
|   |        |       | Conditions Units essential (Temperature of) 298 K / 25°C  AND (solution concentrations of) 1 mol dm <sup>-3</sup> ✓ (may be on diagram) |       | ALLOW 1M and 1 mol/dm³ DO NOT ALLOW 1 mol  IGNORE pressure (No gases in this cell)                                                                        |
| 7 | (a)    | (ii)  | $Cr(s) + 3Fe^{3+}(aq) \rightarrow Cr^{3+}(aq) + 3Fe^{2+}(aq) \checkmark$ State symbols <b>not</b> required                              | 1     | IGNORE state symbols  ALLOW equilibrium sign providing reactants and products are                                                                         |
|   |        |       |                                                                                                                                         |       | on correct sides of equation                                                                                                                              |
| 7 | (a)    | (iii) | E = 1.51 (V)  AND  Sign of Cr electrode: – /negative ✓                                                                                  | 1     | IGNORE sign for E                                                                                                                                         |
| 7 | (b)    |       | Assume Cr <sup>3+</sup>  Cr OR Cr half-cell unless otherwise stated.                                                                    | 3     | FULL ANNOTATIONS MUST BE USED                                                                                                                             |
|   |        |       | [Cr³+] increases <b>OR</b> > 1 mol dm⁻³ ✓                                                                                               |       | ALLOW [Cr³+] more than standard concentration/1 mol dm <sup>-3</sup> IGNORE CrCl <sub>3</sub> reacts                                                      |
|   |        |       | Equilibrium (shown in table) shifts to right <b>OR</b> towards Cr ✓                                                                     |       | <b>Take care:</b> Response may refer to a <b>reverse</b> half equation written by candidate. The equilibrium then shifts to left.                         |
|   |        |       | Electrons are removed/used up/fewer electrons released <b>OR</b>                                                                        |       | IGNORE comments about E <sup>-⊕</sup> changing                                                                                                            |

| Q | Question |      | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Marks | Guidance                                                                                                                                                                                                                                                                                                                                                                                                             |
|---|----------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |          |      | $E$ (for $Cr^{3+} Cr$ ) is less negative / more positive <b>OR</b> The cell has a smaller <b>difference</b> in $E \checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | IGNORE just 'cell potential decreases' (in the question)                                                                                                                                                                                                                                                                                                                                                             |
| 7 | (c)      | (i)  | $HCOOH(I) \rightarrow CO_2(g) + 2H^+ + 2e^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1     | ALLOW multiples<br>e.g. $2HCOOH(I) \rightarrow 2CO_2(g) + 4H^+ + 4e^-$                                                                                                                                                                                                                                                                                                                                               |
| 7 | (c)      | (ii) | HCOOH is a <b>liquid OR</b> is <b>less</b> volatile <b>AND</b> HCOOH is easier to store/transport/stored more safely <b>OR</b> H₂ is more explosive/more flammable ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1     | Assume that 'it' refers to HCOOH  ALLOW ORA throughout  IGNORE comments about efficiency IGNORE comments about biomass and renewable                                                                                                                                                                                                                                                                                 |
| 7 | (d)      | (i)  | amount MnO <sub>4</sub> <sup>-</sup> used = 0.01500 × $\frac{25.40}{1000}$<br>= 3.81 × 10 <sup>-4</sup> (mol) $\checkmark$<br>amount SO <sub>3</sub> <sup>2-</sup> = 3.81 × 10 <sup>-4</sup> × 2.5<br>= 9.525 × 10 <sup>-4</sup> (mol) $\checkmark$<br>amount SO <sub>3</sub> <sup>2-</sup> in original 250 cm <sup>3</sup> = 10 × 9.525 × 10 <sup>-4</sup><br>= 9.525 × 10 <sup>-3</sup> mol $\checkmark$<br>Mass of Na <sub>2</sub> SO <sub>3</sub> in sample = 126.1 × 9.525 × 10 <sup>-3</sup> g<br>= 1.20 g $\checkmark$<br>$n(\text{H}_2\text{O}) = \frac{2.40 - 1.20}{18.0} = 6.67 \times 10^{-2}$ (mol) $\checkmark$ | 6     | FULL ANNOTATIONS MUST BE USED  IF a step is omitted but subsequent step subsumes previous, then award mark for any missed step  Working: at least 3 SF throughout until final % mark  BUT ignore trailing zeroes, ie for 0.01500 allow 0.015/0.0150  ALLOW ECF at all stages  ALLOW M(hydrated sodium sulfite) = $\frac{2.40}{9.525 \times 10^{-3}}$ = 252 ✓  Molar mass of H <sub>2</sub> O = 252 − 126.1 = 125.9 ✓ |

| Question | Answer                                                                                               | Marks | Guidance                                                                                                         |
|----------|------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------|
|          | $n(\text{Na}_2\text{SO}_3): n(\text{H}_2\text{O}) = 9.525 \times 10^{-3}: 6.67 \times 10^{-2} = 1:7$ |       | Number of H <sub>2</sub> O of crystallisation = $\frac{125.9}{18.0}$ = 7                                         |
|          | Formula = Na <sub>2</sub> SO <sub>3</sub> •7H <sub>2</sub> O ✓                                       |       | Formula = Na <sub>2</sub> SO <sub>3</sub> •7H <sub>2</sub> O ✓                                                   |
|          | Formula is required. 1:7 ratio is insufficient                                                       |       |                                                                                                                  |
|          |                                                                                                      |       |                                                                                                                  |
| (d) (ii) | MARK INDEPENDENTLY Except for multiples, equations are only correct answers                          | 3     | ALLOW multiples and equilibrium signs throughout IGNORE state symbols throughout                                 |
|          | Overall: $2MnO_4^- + 6 H^+ + 5 SO_3^{2-} \rightarrow 2Mn^{2+} + 5 SO_4^{2-} + 3 H_2O \checkmark$     |       | e.g. $MnO_4^- + 3 H^+ + 2\frac{1}{2} SO_3^{2-} \rightarrow Mn^{2+} + 2\frac{1}{2} SO_4^{2-} + 1\frac{1}{2} H_2O$ |
|          | Half equations:<br>$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O \checkmark$                    |       |                                                                                                                  |
|          | $SO_3^{2-} + H_2O \rightarrow SO_4^{2-} + 2H^+ + 2e^- \checkmark$                                    |       |                                                                                                                  |
|          | Total                                                                                                | 20    |                                                                                                                  |

**OCR (Oxford Cambridge and RSA Examinations)** 1 Hills Road Cambridge **CB1 2EU** 

#### **OCR Customer Contact Centre**

#### **Education and Learning**

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

#### www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 **OCR** is an exempt Charity

**OCR (Oxford Cambridge and RSA Examinations)** 

Head office

Telephone: 01223 552552 Facsimile: 01223 552553



