4751 (C1) Introduction to Advanced Mathematics

Section A

Sect	Section A						
1	(i) 0.125 or 1/8	1	as final answer				
	(ii) 1	1		2			
2	y = 5x - 4 www	3	M2 for $\frac{y-11}{-9-11} = \frac{x-3}{-1-3}$ o.e. or M1 for grad = $\frac{11-(-9)}{3-(-1)}$ or 5 eg in y = $5x + k$ and M1 for $y - 11$ = their $m(x - 3)$ o.e. or subst (3, 11) or (-1, -9) in y = their $mx + c$ or M1 for $y = kx - 4$ (eg may be found by drawing)	3			
3	x > 9/6 o.e. or $9/6 < x$ o.e. www isw	3	M2 for $9 < 6x$ or M1 for $-6x < -9$ or $k < 6x$ or $9 < kx$ or $7 + 2 < 5x + x$ [condone \le for Ms]; if 0, allow SC1 for $9/6$ o.e found	3			
4	a = -5 www	3	M1 for $f(2) = 0$ used and M1 for $10 + 2a = 0$ or better long division used: M1 for reaching $(8 + a)x - 6$ in working and M1 for $8 + a = 3$ equating coeffts method: M2 for obtaining $x^3 + 2x^2 + 4x + 3$ as other factor	3			
5	(i) $4[x^3]$ (ii) $84[x^2]$ www	3	ignore any other terms in expansion M1 for $-3[x^3]$ and $7[x^3]$ soi; M1 for $\frac{7 \times 6}{2}$ or 21 or for Pascal's				
			triangle seen with 1 7 21 row and M1 for 2^2 or 4 or $\{2x\}^2$	5			

	T		-		-
6	1/5 or 0.2 o.e. www	3	M1 for $3x + 1 = 2x \times 4$ and		
			M1 for $5x = 1$ o.e.		
			<u>or</u>		
			M1 for $1.5 + \frac{1}{2x} = 4$ and		
			1 25		
			M1 for $\frac{1}{2x} = 2.5$ o.e.	3	
7	(i) $5^{3.5}$ or $k = 3.5$ or $7/2$ o.e.	2	1 1 1		-
			M1 for $125 = 5^3$ or $\sqrt{5} = 5^{\overline{2}}$		
			SC1 for $5^{\frac{3}{2}}$ o.e. as answer without		
			working		
	(ii) $16a^6b^{10}$	2	M1 for two 'towns' comest and		
			M1 for two 'terms' correct and multiplied; mark final answer only	4	
8	$b^2 - 4ac$ soi	M1	allow in quadratic formula or clearly		-
o	0 400 SOI	1011	looking for perfect square		
			-0 r		
	$k^2 - 4 \times 2 \times 18 < 0$ o.e.	M1	condone ≤; or M1 for 12 identified as		
	-12 < k < 12	A2	boundary may be two separate inequalities; A1 for		
	12 \ \ \ \ 12	A2	≤ used or for one 'end' correct		
			if two separate correct inequalities seen,		
			isw for then wrongly combining them		
			into one statement; condone <i>b</i> instead of <i>k</i> ;		
			if no working, SC2 for $k < 12$ and SC2	4	
			for $k > -12$ (ie SC2 for each 'end']	
			correct)		
9	y + 5 = xy + 2x $y = xy = 2x - 5 or or ft$	M1	for expansion		
	y - xy = 2x - 5 oe or ft y (1 - x) = 2x - 5 oe or ft	M1 M1	for collecting terms for taking out y factor; dep on xy term		
		M1	for division and no wrong work after		
	$[y =] \frac{2x - 5}{1 - x}$ oe or ft as final answer		_		
			ft earlier errors for equivalent steps if	1	
			error does not simplify problem	4	
10	(i) $9\sqrt{3}$	2	M1 for $5\sqrt{3}$ or $4\sqrt{3}$ seen		
	(") < , 2/2	3	M1 for attempt to multiply num. and		
	(ii) $6 + 2\sqrt{2}$ www		denom. by $3 + \sqrt{2}$ and M1 for denom. 7		
			or $9-2$ soi from denom. mult by $3+\sqrt{2}$	_	
				5	l
					1

Section B

method required – may am, showing equal steps, or B and go half the owards the other ot of these; accept
ot of these; accept
I
arly identified as centre r (or 40 as r^2) www gfc formula and finding c
n centre (or midpt) and dius ²) found ly and correctly
e error ad formula (condone one nula); ft only for 3 term y
t, allow SC1 for (11, 0) lues are $2 \pm a$ $5^2 = 40$ soi $40 - 5^2$ soi $ 2 \pm \sqrt{15} $ cao
(or BC)
r gradient of AB (4) in $y = -3x + c$ or ft eir grad AB used) simplified versions heir tgt for grad $\neq 1$ or (x = 0), $(y = 37)$ etc od: intercepts may be ery proportion then used to
C as Dat Elling Entan

		1 2			
12	i	$3x^2 + 6x + 10 = 2 - 4x$	M1	for subst for x or y or subtraction	
		2 2 10 05 07	3.54	attempted	
		$3x^2 + 10x + 8 = 0$	M1	or $3y^2 - 52y + 220$ [=0]; for	
				rearranging to zero (condone one	
				error)	
		(3x+4)(x+2) [=0]	M1	or $(3y - 22)(y - 10)$; for sensible	
				attempt at factorising or formula or	
				completing square	
		x = -2 or -4/3 o.e.	A 1	or A1 for each of (-2, 10) and	
		y = 10 or 22/3 o.e.	A1	(-4/3, 22/3) o.e.	5
		y 10 01 22 /3 0.0.	111	(1/3, 22/3) 3.6.	
	ii	$3(x+1)^2+7$	4	1 for $a = 3$, 1 for $b = 1$, 2 for $c = 7$ or	
	**			M1 for $10-3 \times \text{their } b^2 \text{ soi or for } 7/3$	
				or for $10/3$ – their b^2 soi	4
				01 101 10/3 then b soi	7
	iii	min at $y = 7$ or ft from (ii) for	B2	may be obtained from (ii) or from	
	111	positive c (ft for (ii) only if in	102	good symmetrical graph or identified	
		correct form)			
		correct form)		from table of values showing	
				symmetry	
				condone error in x value in stated min	
				ft from (iii) [getting confused with 3	
				factor]	
				B1 if say turning pt at $y = 7$ or ft	
				without identifying min	
				or M1 for min at $x = -1$ [e.g. may	
				start again and use calculus to obtain	
				$x = -1$] or min when $(x + 1)^{[2]} = 0$;	
				and A1 for showing y positive at min	
				or M1 for showing discriminant neg.	
				so no real roots and A1 for showing	
				above axis not below eg positive x^2	
				term or goes though (0, 10)	
				or M1 for stating bracket squared	
				must be positive [or zero] and A1 for	
				saying other term is positive	2
				saying other term is positive	

12	·		D1	f/011	
13	i	any correct y value calculated from quadratic seen or implied by plots	B1	for $x \neq 0$ or 1; may be for neg x or eg min.at $(2.5, -1.25)$	
		(0,5)(1,1)(2,-1)(3,-1)(4,1) and $(5,5)$ plotted	P2	tol 1 mm; P1 for 4 correct [including (2.5, -1.25) if plotted]; plots may be implied by curve within 1 mm of correct position	
		good quality smooth parabola within 1mm of their points	C1	allow for correct points only	
				[accept graph on graph paper, not insert]	4
	ii	$x^2 - 5x + 5 = \frac{1}{x}$	M1		
		$x^{3} - 5x^{2} + 5x = 1 \text{ and completion}$ to given answer	M1		2
	iii	divn of $x^3 - 5x^2 + 5x - 1$ by $x - 1$ as far as $x^3 - x^2$ used in working	M1	or inspection eg $(x-1)(x^2+1)$ or equating coeffts with two correct coeffts found	
		$x^2 - 4x + 1$ obtained	A1	COETIIS TOUTIG	
		use of $b^2 - 4ac$ or formula with quadratic factor	M1	or $(x-2)^2 = 3$; may be implied by correct roots or $\sqrt{12}$ obtained	
		$\sqrt{12}$ obtained and comment re shows other roots (real and) irrational or for	A2	[A1 for $\sqrt{12}$ and A1 for comment]	
		$2\pm\sqrt{3}$ or $\frac{4\pm\sqrt{12}}{2}$ obtained isw		NB A2 is available only for correct quadratic factor used; if wrong factor used, allow A1 ft for obtaining two irrational roots or for their discriminant and comment re irrational [no ft if their discriminant is negative]	5