Oxford Cambridge and RSA Examinations

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS METHODS FOR ADVANCED MATHEMATICS, C3

Specimen Paper

Additional materials: Answer booklet
Graph paper
MEI Examination Formulae and Tables (MF 2)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, Centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- You may use a graphical or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The total number of marks for this paper is 72 .

Section A (36 marks)

1 It is suggested that the function $\mathrm{f}(x)=(x+1)^{2}$ is even.
Prove this is false.

2 Find $\int x \sin 2 x \mathrm{~d} x$.

3 Make t the subject in $P=P_{0} \mathrm{e}^{0.1(t-3)}$.

4 Sketch the graph of $y=|2 x+3|$.
Hence, or otherwise, solve the equation $|2 x+3|=2-x$.

5 Using the substitution $u=2 x-1$, or otherwise, calculate the exact value of $\int_{0}^{0.5} 4 x(2 x-1)^{7} \mathrm{~d} x$.

6 Differentiate $\sqrt{2 x+1}$ with respect to x and show that $\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{2} \sqrt{2 x+1}\right)=\frac{5 x^{2}+2 x}{\sqrt{2 x+1}}$.

7 The function $\mathrm{f}(x)$ is defined as $\mathrm{f}(x)=\frac{\cos x}{\mathrm{e}^{x}}$ for $-\pi \leq x \leq \pi$.
Show that $\mathrm{f}(x) \geq 0$ for $\frac{-\pi}{2} \leq x \leq \frac{\pi}{2}$.
State the values of x for which $\mathrm{f}(x)=0$.
Show, using calculus, that the maximum value of $\mathrm{f}(x)$ is 1.55 , correct to 2 decimal places.

Section B (36 marks)

$8 \quad$ Fig. 8.1 shows a sketch of the graph $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=\sqrt{4-x}$ for $0 \leq x \leq 4$.

Fig. 8.1
(i) Write down the domain and range of $\mathrm{f}(x)$.
(ii) (A) Find the inverse function $\mathrm{f}^{-1}(x)$.
(B) Copy Fig 8.1 and draw the graph of $y=\mathrm{f}^{-1}(x)$ on the same diagram.

What is the connection between the graph of $y=\mathrm{f}(x)$ and the graph of $y=\mathrm{f}^{-1}(x)$?
(iii) Figs. 8.2, 8.3 and 8.4 below show the graph of $y=\mathrm{f}(x)$, together with the graphs of $y=\mathrm{f}_{1}(x), y=\mathrm{f}_{2}(x)$ and $y=\mathrm{f}_{3}(x)$ respectively, each of which is a simple transformation of the graph $y=\mathrm{f}(x)$.
Find expressions in terms of x for each of the functions $\mathrm{f}_{1}(x), \mathrm{f}_{2}(x)$ and $\mathrm{f}_{3}(x)$.

Fig. 8.2

Fig. 8.3

Fig. 8.4
(iv) The function $\mathrm{g}(x)$ is defined in such a way that the composite function $\operatorname{gf}(x)$ is given by $\mathrm{gf}(x)=x-4$.
Find the functions $g(x)$ and $g^{2}(x)$.
(v) State the range of the function $\mathrm{f}^{2}(x)$.

Hence show that the equation $\mathrm{f}^{2}(x)=x$ must have a solution.
[You are not required to solve the equation.]
$9 \quad$ Fig. 9 shows a sketch of the graph $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=\frac{\ln x}{x}(x>0)$.

Fig. 9
The graph crosses the x-axis at the point P and has a turning point at Q .
(i) Write down the x-coordinate of P .
(ii) Find the first and second derivatives $\mathrm{f}^{\prime}(x)$ and $\mathrm{f}^{\prime \prime}(x)$, simplifying your answers as far as possible.
(iii) (A) Hence show that the x-coordinate of Q is e .
(B) Find the y-coordinate of Q in terms of e .
(C) Find $\mathrm{f}^{\prime \prime}(\mathrm{e})$ and use this result to verify that Q is a maximum point.
(iv) Find the exact area of the finite region between the graph $y=\mathrm{f}(x)$, the x-axis, and the line $x=2$.

