AQA Level 2 Certificate in FURTHER MATHEMATICS (8365/2)

 Paper 2

 Paper 2}

Specimen 2020
Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- mathematical instruments

You may use a calculator

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the bottom of this page.
- Answer all questions.
- You must answer the questions in the space provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80 .
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer booklet.

Please write clearly, in block capitals, to allow character computer recognition.
Centre number \square Candidate number \square
Surname \square
Forename(s) \square

Candidate signature \qquad

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Answer all questions in the spaces provided.
1 A sketch of the lines $y=2 x$ and $y=6$ is shown.

Work out the area of triangle $O P Q$.
\qquad
\qquad
\qquad

Answer
units ${ }^{2}$

2 A circle, centre $(0,0)$ has circumference 20π
Work out the equation of the circle.
\qquad
\qquad
\qquad
$3 M$ is the midpoint of the line $A B$.

Work out the values of p and r.
Work

$$
p=
$$

$$
r=
$$

\qquad

4 (a) Circle the solution of $-3 x<-18$

$$
x>-6 \quad x<-6 \quad x>6 \quad x<6
$$

4 (b) Circle the solution of $\quad x^{2} \geqslant 16$

$$
\begin{array}{ll}
x \geqslant-4 \text { or } x \leqslant 4 & x \leqslant-4 \text { or } x \geqslant 4 \\
x \geqslant-4 \text { or } x \geqslant 4 & x \leqslant-4 \text { or } x \leqslant 4
\end{array}
$$

$5 \quad$ Here is a sketch of $y=\mathrm{f}(x)$ where $\mathrm{f}(x)$ is a quadratic function.

The graph

intersects the x-axis at $A(-1,0)$ and B has a maximum point at $(0.5,6)$

Not drawn accurately

5 (a) Work out the coordinates of B.
\qquad , \qquad

5 (b) The equation $\mathrm{f}(x)=k$ has exactly one solution.
Write down the value of k.

Answer
$6 \quad \mathbf{A}=\left(\begin{array}{cc}4 & -1 \\ -7 & 2\end{array}\right) \quad \mathbf{B}=\binom{s}{-5} \quad \mathbf{C}=\binom{-1}{t} \quad \mathbf{D}=\left(\begin{array}{cc}2 & 1 \\ 7 & u\end{array}\right)$
s, t and u are constants.

6 (a) $\quad A B=C$
Work out the values of s and t.

$$
s=
$$

\qquad

6 (b) $\quad A D=I$
Work out the value of u.

$$
u=
$$

7 Work out the equation of the straight line that is parallel to the line $2 y=x$
and
intersects the x-axis at $(4,0)$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

8 (a) Work out $\frac{a b}{c d} \div \frac{b c}{a d}$
Give your answer as a single fraction in its simplest form.

Answer

8 (b) Work out $\quad \frac{7}{2 x^{2}}+\frac{4}{3 x}$
Give your answer as a single fraction in its simplest form.
$9 \quad A, B$ and C are points on a circle, centre O.

Not drawn accurately

Work out the size of angle y.

10

$$
y=\frac{6 x^{9}+x^{8}}{2 x^{4}}
$$

Work out the value of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ when $x=0.5$
$11 \quad$ For sequence $\mathrm{A}, \quad n$th term $=\frac{n}{14 n+30}$
For sequence $B, \quad n$th term $=\frac{2}{n}$

The k th term of sequence A equals the k th term of sequence B.

Work out the value of k.
You must show your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad \longrightarrow
\qquad
\qquad

Answer

12 This shape is made from two rectangles.
All dimensions are in centimetres.

12 (a) The perimeter of the shape is 252 cm
Show that $y=126-45 x$

12 (b) The area of the shape is $A \mathrm{~cm}^{2}$
Show that $A=2520 x-450 x^{2}$
[2 marks]
\qquad
\longrightarrow
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

12 (c) Use differentiation to work out the maximum value of A as x varies.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

$$
\begin{array}{ll}
\mathrm{f}(x)=3 x^{2}+6 & \text { for all } x \\
\mathrm{~g}(x)=\sqrt{x-5} & x \geqslant 5
\end{array}
$$

13 (a) Work out the value of $\mathrm{gf}(4)$
\qquad
\qquad
\qquad
\qquad

Answer

13 (b) Show that $\mathrm{fg}(x)$ can be written in the form $a(x-a)$ where a is an integer.

14 Use the sine rule to work out the size of obtuse angle x.

Not drawn

accurately

15 Here is a sketch of the curve $y=a b^{-x}$ where a and b are positive constants. $(0,3)$ and $(2,0.48)$ lie on the curve.

Work out the values of a and b.

$$
\begin{gathered}
a= \\
b=
\end{gathered}
$$

16 Simplify $\frac{8 x^{3}-50 x}{2 x\left(6 x^{2}-x-35\right)}$
Give your answer in the form $\frac{a x+b}{c x+d}$ where a, b, c and d are integers.

Answer

17 By multiplying both sides of the equation by $x^{\frac{1}{2}}$
Solve $2 x^{\frac{3}{2}}-3 x^{\frac{1}{2}}=7 x^{-\frac{1}{2}}$ for $x>0$
Give your answer to 3 significant figures.
You must show your working.
\qquad

Answer

18 How many odd numbers greater than 30000 can be formed from these digits $\begin{array}{lllll}2 & 4 & 6 & 7 & 8\end{array}$
with no repetition of any digit?

Answer

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

19 (a) Use the factor theorem to show that $(3 x+1)$ is a factor of $\mathrm{f}(x)$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

19 (b) Factorise $\mathrm{f}(x)$ fully.

Answer
$20 \quad V A B C D$ is a pyramid with a horizontal rectangular base $A B C D$.
V is directly above the centre of the base.

$$
\begin{aligned}
& V A=V B=V C=V D=10 \mathrm{~cm} \\
& A B=8 \mathrm{~cm} \quad B C=6 \mathrm{~cm}
\end{aligned}
$$

M is the midpoint of $B C$.

Work out the size of angle VMD.

21 Show that $(2 n+3)^{3}+n^{3}$ is divisible by 9 for all integer values of n.
\qquad

END OF QUESTIONS

