OXFORD CAMBRIDGE AND RSA EXAMINATIONS
Advanced GCE

CHEMISTRY B (SALTERS)
 F334 MS

Unit F334: Chemistry of Materials
Specimen Mark Scheme
The maximum mark for this paper is $\mathbf{9 0}$

Question Number	Answer	Max Mark
1(a)	Amino acids (1).	
(b)	 1 mark for structure of organic ion and 1 mark for charge on amino group (2); 1 mark for chloride ion alone (1).	
(c)(i)	Asymmetric carbon atom / chiral centre (carbon atom) / carbon bonded to/ with AW 4 different atoms/groups (1).	[3]
(ii)		[1]
	Correct 3D structural formula for one enantiomer(1); Mirror images (1).	[2]
(d)	 or 1 mark for one COOH group and one NH_{2} group structure in molecule (1); 1 mark for rest correct for either structure (1).	
		[2]

\begin{tabular}{|c|c|c|}
\hline Question Number \& Answer \& \begin{tabular}{l}
Max \\
Mark
\end{tabular} \\
\hline (e)(i) \& \begin{tabular}{l}
One mark each for points in bold and then any two others up to a total of 5 marks: \\
Reaction/AW takes place at active site; active sites have specific shapes / enzyme contains hole or cleft with specific shape; \\
due to the tertiary structure of the enzyme / way it folds; only one of the enantiomers will fit in the active site AW; interactions between arginine and active site weaken bonds; activation energy is lowered; high temperatures cause intramolecular bonds to break and active site is lost; \\
at low temperatures rate is slow since activation energy is not often reached.
\end{tabular} \& [5] \\
\hline (ii)
1(e)(iii) \& \begin{tabular}{l}
Rate \(=\mathrm{kx}\) [arginine] \(\times\) [enzyme] \\
1 mark for [arginine] and [enzyme] (1); \\
1 mark for rest correct (1); \\
\(\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}(1)\) allow any order for units. \\
At low [arginine]: rate determining step/ slow step involves 1 molecule of arginine and 1 enzyme molecule forming complex (1); QWC hence first order* (1) \\
At high [arginine]: rds does not involve arginine/rds is breakdown of complex (1) since all enzyme sites are occupied and [complex] is constant (1). \\
QWC relation of one of these two mpts to zero order* [1] *score either one of these.
\end{tabular} \& [3]

[4]

\hline \& Total \& [21]

\hline 2(a)
(b)

(c) \& | |
| :--- |
| (1); allow without the C within the ring. |
| Burning/combustion (1); Energy produced can be used/reducing landfill (1). |
| recycling AW(1); oil resources saved AW/reducing landfill (1). |
| (Below T_{g}) chains do not have enough energy (may describe in terms of vibration or motion of chains) (1); |
| to move over/slide over one another (1); |
| force applied to change shape of polymer will cause 'frozen' chains to break AW (1). | \& [1]

[4]

[3]

\hline
\end{tabular}

Question Number	Answer	Max Mark
(d)(i)	 Ester linkage correct (1); rest correct (1) ignore brackets.	
(ii)	Intermolecular bonds between chains are greater/stronger NOT 'MORE'(1); chains are able to get closer (because of the flat ring system) (1).	[2]
(iii)	O-H group present in compound A (1); will give absorbance at $2500-3200\left(\mathrm{~cm}^{-}\right.$ ${ }^{1}$) (1)	[2]
(e)(i)	Conc. sulfuric acid / c. $\mathrm{H}_{2} \mathrm{SO}_{4}$ (1); Heat/warm (under reflux)/reflux (1).	[2]

Question Number	Answer	Max Mark
(ii) (iii) (iv)	Condensation PET/PEN are formed by condensation reactions whereas polythene are formed by addition reactions (1); condensation reactions lead to wasted products because elimination reactions occur (1); addition reactions use all reactant atoms (1). TLC plate showing two dots (1); $\mathrm{R}_{\mathrm{f}}=$ distance moved by spot/distance moved by solvent front (1)	[1] [3] [2]
	Total	[22]
3(a)(i) (ii) (iii) (b)(i) (ii) (iii) (c)	$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}(1) .$ Oxidation of $\mathrm{Fe}(\mathrm{II})$ ions/Fe(II) ion loses electron/ $\mathrm{Fe}(\mathrm{II})$ converted to Fe (III) (1); by oxygen/air (1). $\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})$ correct formula for $\mathrm{Fe}(\mathrm{OH})_{3}$ (1); balanced equation as above (1) ignore spectator ions if balanced; correct state symbols (1). (1). Ligand exchange/complex formation/ligand substitution/Ligand displacement (1). particular frequencies/wavelengths of light/radiation in visible region absorbed (1); hence colour transmitted is light NOT absorbed,(in this case green/ complementary colour is seen (1). $\mathrm{SO}_{3}{ }^{2-}$ (1); E^{\ominus} for half-reactions are more negative than E^{\ominus} for $\mathrm{Fe}^{2+} / \mathrm{Fe}^{3+}$ half-reaction / electrons will flow to Fe^{3+} (1). $2 \mathrm{Fe}^{3+}+\mathrm{SO}_{3}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SO}_{4}{ }^{2-}+2 \mathrm{H}^{+}+2 \mathrm{Fe}^{2+}$ reactants and products correct (1); balanced (1).	[1] [2] [3] [1] [1] [2] [4] [4]
	Total	[14]
4(a) (b)(i)	$\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$ correct formulae of substances (1); balanced correctly with electrons on left (1). Use of pipette for measuring hydrogen peroxide (1); use of burette for manganate(VII) (1) QWC award mark only if spelling of burette is correct; (Use of burette \& pipette but with solutions switched is 1 mark only)	[2]

\begin{tabular}{|c|c|c|}
\hline Question Number \& Answer \& Max Mark \\
\hline 5(a)(i) cont'd \& \begin{tabular}{l}
If only one interaction shown but all three components are correct then give 2 marks out of 3; \\
\(\mathrm{Y}=\) adenine and uracil completed correctly (1); \\
sugar = deoxyribose (1).
\end{tabular} \& [4] \\
\hline (ii)

(iii)

(b) \& \begin{tabular}{l}

Lone pair of electrons on N (1); can accept proton/hydrogen ion $/ \mathrm{H}^{+}$(1).

Double helix (1).

It explains all the known facts about DNA/ it helps predict facts/properties/reactions which can be tested and shown to be correct (1).

 \&

[3]

[1]

[1]
\end{tabular}

\hline \& Total \& [9]

\hline \& - Paper Total \& [90]

\hline
\end{tabular}

