Mark Scheme Summer 2009

GCE

GCE Chemistry (8CH01)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 08445760025 , our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http://www.edexcel.com/Aboutus/contact-us/

Alternately, you can speak directly to a subject specialist at Edexcel on our dedicated Science telephone line: 08445760037

Summer 2009
Publications Code USO21182
All the material in this publication is copyright
© Edexcel Ltd 2009

Contents

1. 6CH01/01 Mark Scheme 5
2. 6CH02/01 Mark Scheme 19

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

1 / means that the responses are alternatives and either answer should receive full credit.
2 () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

3 [] words inside square brackets are instructions or guidance for examiners.
4 Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.

5 OWTTE means or words to that effect
$6 \mathrm{ecf} / \mathrm{TE} / \mathrm{cq}$ (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- show clarity of expression
- construct and present coherent arguments
- demonstrate an effective use of grammar, punctuation and spelling.

Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated "QWC" in the mark scheme BUT this does not preclude others.

6CH01/01

Section A

Question Number	Correct Answer	Reject	Mark
$\mathbf{1}$	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{2}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{3}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
4	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
5	D		1

Question Number	Correct Answer	Reject	Mark
6	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{7}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{8}$	D		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{9}$	A		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 0}$	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 1}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 2}$	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 3}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 4}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 5}$	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
16	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 7}$	D		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 8}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 9}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 0}$	D		$\mathbf{1}$

Section B

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 1 (a) (i)}$	Easier to transport / easier to store / less space / less volume needed for storage / easier to handle / easier to transfer IGNORE references to "safety" Accept Denser/cheaper to transport OWTTE	Just "cost"	$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
21 (a)(ii)	skeletal formula (1)		
	Name: butane (1) Stand alone skeletal formula (1)		

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 1}$ (a)(iii)	(Structural) isomers		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 1 (b) (i)}$	$\mathrm{Cl}_{2} \rightarrow \mathrm{Cl} \cdot \mathrm{Cl} \cdot /$ $\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl} \cdot \quad$ (1) (U.V.) light / sunlight (1) Must show the dots • IGNORE any subsequent propagation steps in (b)(i)	heat alone	

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 1}$ (b)(ii)	$\mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{Cl} \cdot \rightarrow \mathrm{C}_{3} \mathrm{H}_{7} \cdot+\mathrm{HCl}$ (1)		$\mathbf{2}$
	$\mathrm{C}_{3} \mathrm{H}_{7} \cdot+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Cl}+\mathrm{Cl} \cdot(1)$		
	Must show the dots •		

Question Number	Correct Answer	Reject	
21 (b)(iii)	$\mathrm{C}_{3} \mathrm{H}_{7} \cdot+\mathrm{Cl} \cdot \rightarrow \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Cl}$		Mark
	OR		
	$\mathrm{Cl}^{\bullet}+\mathrm{Cl} \cdot \rightarrow \mathrm{Cl}_{2}$		
	$\mathrm{CR}_{3} \mathrm{H}_{7} \cdot+\mathrm{C}_{3} \mathrm{H}_{7} \cdot \rightarrow \mathrm{C}_{6} \mathrm{H}_{14}$		
Must show dots in termination step			

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 1}$ (c)(i)	Alkene / triene Accept Diene Carbon-carbon double bond		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark		
$\mathbf{2 1}$ (c)(ii)	From: Red / brown / orange / yellow or combinations of these colours To: colourless both colours needed	"clear" instead of colourless		\quad	1
:---					

Question Number	Correct Answer	Reject	Mark
21 (c)(iii)	Electrophilic (1) addition (1)		$\mathbf{2}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 1}$ (d)			$\mathbf{2}$
repeat unit (1) Continuation bonds shown (but these bonds do not have to cut through the brackets) (1) n not essential IGNORE the position of " n " relative to the repeat unit (e.g. can be written as a superscript)			

Question	Correct Answer			Reject	Mark
22 (a)(i)					3
	Energy change	Letter	$\Delta H / k J$ mol^{-1}		
	Lattice energy for sodium chloride	E	-775		
	Enthalpy change of atomization of sodium	C	+109		
	Enthalpy change of atomization of chlorine	A	+121		
	First ionization energy of sodium	B	+494		
	First electron affinity of chlorine	F			
	Enthalpy change of formation of sodium chloride	D	-411		
	$\begin{aligned} & 6 \text { correct letters (3) } \\ & 5 \text { or } 4 \text { correct letters (2) } \\ & 3 \text { or } 2 \text { correct letters (1) } \\ & 1 \text { or } 0 \text { correct letters (0) } \end{aligned}$				

Question Number	Correct Answer	Reject	Mark
22 (a)(ii)	Expression such as: $\begin{align*} & D=C+B+A+F+E \\ & -411=+109+494+121+F+ \\ & (-775) \end{align*}$ Answer: $\begin{equation*} F=-360\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{equation*}$ Check empty box in 22(a)(i), as answer may be written there. Answer must follow from working Correct answer only (2) Correct answer with some consistent working (2)		2

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 2 ~ (b) (i) ~}$	(Bonding in NaCl) 100\% ionic OR almost completely ionic OR no covalent character/(very) little covalent character	'Molecule' (0)	$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
22 (b)(ii) QWC	Agl has (a degree of) covalent character (1)	due to polarization or distortion (of the anion) (1)	

Question Number	Correct Answer	Reject	Mark		
22 (c)	Any two of the following: QWC	(outermost) electron further from the nucleus/atoms get bigger/more shells (outermost) electron more shielded (by inner shells of e) (force of) attraction between nucleus and (outermost) electron decreases (down the Group) OR (outermost) electron held less strongly (down the Group) OR (outermost) electron becomes easier to remove (down the Group)	"ions" get bigger (down Group)	\quad	2
:---					

Question	Correct Answer			Reject	Mark
23 (a)					3
	element	structure	bonding		
	sodium	Giant	metallic		
	silicon	Giant (atomic)/ macromolecular/ giant molecular	covalent		
	sulfur	simple / small molecules OR (simple) molecular OR S_{8} molecules	covalent or van der Waals' forces/ London forces/ intermolecular forces/dispersion forces/induceddipole forces		
	IGNORE the word "lattice" OR "crystalline" 6 boxes correct (3) 5,4 boxes correct (2) 3,2 boxes correct (1) 1,0 boxes correct (0)				

Question Number	Correct Answer	Reject	Mark
23 (b)	Si : covalent bonds / many bonds/ strong bonds (between atoms) (1)	any reference to intermolecular forces in Si	$\mathbf{2}$
S: weak forces /van der Waals' forces/London forces/dispersion forces/intermolecular forces/induced-dipole forces (1) (need to be overcome)	suggestion that covalent bonds are broken		

Question Number	Correct Answer	Reject	Mark
23 (c) QWC	Cations/ions decrease in size (from Na^{+}to Al^{3+}) OR charge increases/charge density on (cat)ions increases/ "effective nuclear charge" increases (from Na^{+} to Al^{3+}) more e^{-}(per atom in 'sea' of delocalized electrons) / more delocalized electrons OR (force of) attraction between (cat)ions/nucleus and (delocalised) electrons increases (from Na to Al) IGNORE "nuclear charge increases"/ "increasing no. of protons"	atoms decrease in size any mention of "molecules"/ "covalent bonds"/ "van der Waals' forces"/ "ionic bonds" (0) overall	2

Question Number	Correct Answer	Reject	Mark
$\begin{equation*} 23 \text { (d)(i) } \tag{1} \end{equation*}$ QWC	- Add MgO to acid/react MgO with acid/dissolve MgO in acid [NOTE: mention of heating not required. IGNORE water bath/reflux] - Filter - Heat/boil filtrate $/ \mathrm{MgSO}_{4}$ solution (until volume reduced by half) - Leave to cool/leave to crystallise/evaporate slowly/leave to evaporate (decant / filter / pick out crystals, then) Leave to dry/pat dry/dry between filter papers/put in an oven/put in a desiccator/dry the crystals IGNORE any washing of crystals immediately prior to drying them	Just "warm" the filtrate $/ \mathrm{MgSO}_{4}$ solution Use of a desiccant (added to crystals)	5

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 3}$ (d)(ii)	Rinse with (plenty of) water /use a damp cloth or damp (paper) towel / add a (named) weak alkali (e.g. solid or aqueous sodium hydrogencarbonate)	Any named strong alkali/just "strong alkali"	$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 3}$ (e)(i)	Insoluble strontium sulfate/insoluble SrSO_{4} (forms on the strontium carbonate)		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
23 (e)(ii)			2

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 4 (a) (i)}$	$\frac{2.90}{58}=0.05(00)(\mathrm{mol})$		
correct answer only (1)			

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 4 ~ (a) (i i) ~}$	$200 \times 4.18 \times 58.2$ $=48655(J)$ OR $48.655 \mathrm{~kJ} \mathrm{(1)}$ for correct $\triangle T(1)$ IGNORE sf IGNORE signs at this stage		$\mathbf{2}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 4}$ (a)(iii)	$-\frac{48655 ~}{0.0500-973100\left(\mathrm{~J} \mathrm{~mol}^{-1}\right)}$$=-973 \mathrm{~kJ} \mathrm{~mol}^{-1}(3$ s.f. $)$ $/-973000 \mathrm{~J} \mathrm{~mol}^{-1}(3 \mathrm{~s} \mathrm{s.f)}$. answer (1) sign and units (1) [Do not award sign and units mark if units given are just "kJ" or just "J"] three sig figs (1) CQ on (a)(i)\& (ii)	$\mathbf{3}$	

Question Number	Correct Answer	Reject	Mark
24 (b)(i)	Heat loss/energy loss Accept Incomplete combustion OWTTE IGNORE "experimental error"/ "departure from standard conditions"	Anything related to "average values" (0)	$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 4}$ (b)(ii)	Difference: less exothermic / less negative IGNORE "higher" if written with less exothermic/less negative Accept just "lower"/ "less" (1)	Just "higher" (0)	2
	Justification: energy taken in to form gas/energy required to form gas/energy needed to form gas/takes heat in to form gas/heat required to form gas Or reverse argument Mark these two points independentlyJust "H2O(g) is not water's standard state"		

Question Number	Correct Answer	Reject	Mark		
24 (c)(i)	Enthalpy / energy / heat (energy) change (when) one mole of a substance/one mole of a compound is formed from its elements (in their most stable states)	"energy required" OR "energy released"	"one mole of product(s)"		
	298K / $25^{\circ} \mathrm{C} /$ a stated temperature AND 1 atm pressure/100 kPa	room temperature/rtp from its reactants			
IGNORE any references to					
Concentration				\quad	(1)
:---					

