Mark Scheme 4752 January 2007

Section A

Section A								
1	$\frac{5}{2} \times 6x^{\frac{3}{2}}$	1+1	- 1 if extra term	2				
2	-0.2	3	M1 for $5 = \frac{6}{1-r}$ and M1 dep for correct constructive step	3				
3	$\sqrt{8}$ or $2\sqrt{2}$ not $\pm\sqrt{8}$	3	M1 for use of $\sin^2 \theta + (1/3)^2 = 1$ and M1for $\sin \theta = \sqrt{8/3}$ (ignore ±) Diag.: hypot = 3, one side =1 M1 3rd side $\sqrt{8}$ M1	3				
4	(i) C (ii) B (iii) 2 ⁿ⁻¹	1 1 1		3				
5	(i) -0.93, -0.930, -0.9297 (ii) answer strictly between 1.91 and 2 or 2 and 2.1	2 B1	M1 for grad = $(1 - \text{their } y_B)/(2 - 2.1)$ if M0, SC1 for 0.93 don't allow 1.9 recurring					
	(iii) $y' = -8/x^3$, gradient = -1	M1A1		5				
6	At least one cycle from (0, 0) amplitude 1 and period 360[°] indicated	G1 G1dep						
	222.8 to 223 and 317 to 317.2 [°]	2	1 each, ignore extras	4				
7	x < 0 and $x > 6$	3	B2 for one of these or for 0 and 6 identified or M1 for x ² -6x > 0 seen (M1 if y found correctly and sketch drawn)	3				
8	$a+6d=6$ correct $30=\frac{10}{2}(2a+9d)$ correct o.e. elimination using their equations $a=-6$ and $d=2$ 5th term = 2	M1 M1 M1f.t. A1 A1	Two equations in a and d	5				
9	$(y =) 2x^3 + 4x^2 - 1$ accept $2x^3 + 4x^2 + c$ and $c = -1$	4	M2 for $(y =) 2x^3 + 4x^2 + c$ (M1 if one error) and M1 for subst of $(1, 5)$ dep on their $y =$, +c, integration attempt.	4				
10	(i) $3 \log_a x$ ii) $b = \frac{1000}{1000}$	2	M1 for $4 \log_a x$ or $- \log_a x$; or $\log x^3$ M1 for 1000 or 10^3 seen	4				
	C							

11	i	Correct attempt at cos rule	M1	any vertex, any letter	
		correct full method for C	M1		
		C = 141.1	A1		
			A1	or B4	4
		bearing = $[0]38.8$ cao			
	ii	1/2 × 118 × 82 × sin their C or	M1	or correct use of angle A or angle B	
	"	supp.	1011	or correct acc or angle 7 or angle B	2
		3030 to 3050 [m ²]	A1		_
	iiiA		M1	or $\cos\theta = (130^2 + 130^2 -$	
	IIIA	$\sin (\theta/2) = (\frac{1}{2} \times 189)/130$	IVII		2
		4 0070 4 00		189 ²)/(2x130x130)	2
		1.6276 → 1.63	A1	In all methods, the more accurate	
	l			number to be seen.	
	iiiB	$0.5 \times 130^2 \times \sin 1.63$	M1	condone their θ (8435)	
		$0.5 \times 130^2 \times 1.63$	M1	condone their θ in radians (13770)	
		their sector – their triangle AOB	M1	dep on sector > triangle	
		5315 to 5340	A1		4
12	i	(2x-3)(x-4)	M1	or (11 ±√(121 – 96))/4	
		x = 4 or 1.5	A1A1	if M0, then B1 for showing $y = 0$	
				when $x = 4$ and B2 for $x = 1.5$	3
	ii	y' = 4x - 11	M1	condone one error	
		= 5 when $x = 4$ c.a.o.	A1		
		grad of normal = -1/their y'	M1f.t.		
		y[-0] = their -0.2 (x - 4)	M1	or 0 = their (-0.2)x4 + c dep on	
), o j <u></u> o (x .)		normal attempt	
		y-intercept for their normal	B1f.t.	s.o.i. normal must be linear or	6
		area = $\frac{1}{2} \times 4 \times 0.8$ c.a.o.	A1	integrating their f(x) from 0 to 4 M1	
			, , ,	integrating <u>them</u> I(X) item 6 to 1 Wil	
	iii	$\frac{2}{3}$ $\frac{3}{11}$ $\frac{11}{3}$ $\frac{12}{3}$	M1	condone one error, ignore + c	
	•••	$\frac{2}{3}x^3 - \frac{11}{2}x^2 + 12x$	M1	ft their (i), dep on integration attempt.	
		attempt difference between value	IVII	c.a.o.	
		at 4 and value at 1.5	A1	C.a.o.	3
		$[-]5\frac{5}{24}$ o.e. or $[-]5.2(083)$	Λ1		3
13	i	$\log_{10} y = \log_{10} k + \log_{10} 10^{ax}$	M1		
13	•				2
		$\log_{10} y = ax + \log_{10} k$ compared	M1		
		to y = mx+c	T4	condone one orror	
	ii	2.9(0), 3.08, 3.28, 3.48, 3.68	T1	condone one error	
		plots [tol 1 mm]	P1f.t		2
		ruled line of best fit drawn	L1f.t.		3
		intercent 2.5 approx	N 1 1	ory 2.7 m/y 4)	
	iii	intercept = 2.5 approx	M1	or $y - 2.7 = m(x - 1)$	
		gradient = 0.2 approx	M1		
		$y = their 300x 10^{x(their 0.2)}$	M1f.t.		3
		or $y = 10^{(\text{their } 2.5 + \text{their } 0.2x)}$			
	iv	subst 75000 in any x/y eqn	M1		
		subst in a correct form of the	M1		
		relationship		B3 with evidence of valid working	3
		11,12 or 13	A1		
	٧	"Profits change" or any reason for	R1	too big, too soon	1
		this.			
		ı	·	ı	1