F332 Chemistry of Natural Resources

Que	Question		Expected Answers	Marks	Additional Guidance
1	(a)		chlorine is volatile / a gas (1) ; toxic / poisonous / causes respiratory diseases / choking gas (1) ;	2	do not allow harmful / irritant / dangerous instead of toxic.
	(b)	(i)	(moles NaCl =) 100000 / 58.5 (= 1709) (1) ; moles $Cl_2 = \frac{1}{2}$ moles NaCl (1) ; volume Cl_2 = moles $Cl_2 \times 24$ (= 20513dm ³) (1) ;	3	indication of halving mols of NaC <i>l</i> or doubling 58.5 = 117 allow any number of significant figures including 1sf. allow a volume of 20508dm ³ , which is obtained if the rounded up value for the moles of NaC <i>l</i> is used.
		(ii)	100% atom economy (1) ;	1	ignore high atom economy allow all products are useful allow no waste products ignore references to side reactions
	(c)	(i)	Diaphragm cell: advantage no environmental concerns / uses less electricity / uses less energy (1) ; disadvantage uses lots of steam / chlorine / Cl ₂ / product must be purified(1) ;	2	
		(ii)	the required transportation links are already there / skilled workforce lives locally / near to necessary raw materials / links to electricity / shared facilities / shared resources / easier to obtain planning permission / existing infrastructure / risks concentrated in one area(1);	1	

Question			Expected Answers	Marks	Additional Guidance
		(iii)	2Cl $^-\!\rightarrow$ Cl_2 + 2e $^-$ or balanced with $^{1\!\!/_2}$ (2) ;	2	$Cl^{-} \rightarrow Cl_2 $ (1) ; adding electrons and balancing (1) ;
					ignore state symbols
					allow $2Cl^ 2e^- \rightarrow Cl_2$
					2 nd mark depends on 1st
		(iv)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁵ (1);	1	allow upper or lower case letters but numbers must be superscripts
					allow [Ne] 3s ² 3p ⁵
	(d)	(i)	$Cl_2 = 0$ (1); $Cl^- = -1$ (1);	2	do not allow 1-
		(ii)	reduction (1);	2	allow oxidation state becomes more negative
					ignore redox
					mark independently
		(iii)	chlorine is a more powerful / stronger / better oxidising	1	do not allow chlorine is more reactive than bromine.
					allow chlorine has a higher oxidising ability.
		(iv)	making medicines / making flame retardants (1);	1	allow water purification, making agricultural chemicals (like bromomethane), making dyes / photography / making solvents.
					allow testing for unsaturation or a stated laboratory use

Question	Expected Answers	Marks	Additional Guidance
(e)	must have: 1. instantaneous (dipole) – induced dipole bonds (underlined part must be correctly spelt) (1) ; plus four out of: 2. electron movements in the molecules create an uneven distribution of charge (1) ; 3. a dipole is induced in a neighbouring molecule leading to attraction (1) ; 4. intermolecular bonds are stronger in bromine/Br ₂ ORA(1) ; 5. bromine has more electrons (ORA) (1) ; 6. more energy / higher temperature is needed to break intermolecular bonds in bromine ORA (1) ;	5	 allow references to intermolecular forces, rather than intermolecular bonds. 1. allow anywhere in answer allow <u>van der Waals</u> correctly spelt, ignoring capitals 4. do not allow more / higher intermolecular bonds 5. do not allow references to electron density. 6. a clear statement referring to breaking the covalent bond in bromine cons this point.
	Total	23	

Que	stion		Expected Answers	Marks	Additional Guidance
2	(a)	(i)	white (1) ;	1	do not allow off white/cream/grey white ignore cloudy ignore changes of colour on standing
		(ii)	Ag ⁺ (aq) + Cl ⁻ (aq) → AgCl(s) equation (1) ; state symbols (1) ;	2	completely correct equation (i.e. without spectator ions) scores the first mark. allow answer with multiples mark state symbols separately – must have the idea of $(aq) + (aq) \rightarrow (s)$
		(iii)	Ag ₂ SO ₄ (1) ;	1	ignore brackets around SO ₄
	(b)	(i)	equilibrium (position) moves to left / towards reactants(1) ; HCO ₃ ⁻ (concentration) increases(1) ;	2	equilibrium moves to make more HCO ₃ ⁻ gains both marks
		(ii)	rate of forward reaction = rate of back reaction / reactants and products are formed at the same rate (1) ; <u>concentrations</u> of reactants and products remain constant / closed system (1) ;	2	do not allow concentrations of reactants and products are the same / equal
	(c)	(i)	intermolecular bonds in chloromethane are weak <u>er</u> ORA (1) ;	1	answer must be a comparison. do not allow less/fewer for weaker ignore references to specific types of intermolecular bond

Question			Expected Answers	Marks	Additional Guidance
		(ii)	at least one intermolecular bond shown from CI of one molecule to C of another (1) ;	2	intermolecular bond can be shown in other forms, but not as a solid line.
			C and CI of each molecule shown with $\delta^{^+}\!/\delta^{^-}$ charge (1) ;		there must be 2 $\delta^{\scriptscriptstyle +}$ on 2 carbons and 2 $\delta^{\scriptscriptstyle -}$ on 2 chlorines
			$H \xrightarrow{\delta^{+} \mid \delta^{-} \\ H \xrightarrow{\delta^{-} CI \\ H \\ \delta^{-} \\ H \\ $		ignore any δ⁺/ δ⁻ on hydrogen.
		(iii)	permanent dipole-(permanent) dipole (1);	1	do not allow pd-pd
		(iv)	346 x 1000 (=346000) (1) ;	2	
			answer / 6.02 x 10^{23} = 5.748 x 10^{-19} J (1) ;		allow 2 or more sig figs
		(v)	answer to (c) (iv) / 6.63 x 10 ⁻³⁴ (1) ;	3	
			evaluation of number divided by h (= 8.67×10^{14} Hz) (1);		
			3 sf (1) ;		award sf mark for an answer that is the correct 3sf value of a shown calculation.
	(d)	(i)	$C_4H_9OH + HCI \rightarrow C_4H_9CI + H_2O (1);$	1	allow answers with other structural forms for butan-1-ol and 1-chlorobutane.
					Ignore state symbols
		(ii)	nucleophilic (1) ;	2	allow answers indicated in other ways, such as circling.
			substitution (1) ;		each additional underline cons a mark
		(iii)	(shaking with) (sodium / potassium) hydrogencarbonate (solution) (1) ;	1	allow sodium / potassium hydrogen carbonate allow sodium / potassium carbonate

Question	Expected Answers	Marks	Additional Guidance
(iv)	(anhydrous) sodium sulfate (1) ; or other salt with an anhydrous form	1	allow <u>conc.</u> H ₂ SO ₄ / silica gel allow correct formula allow sulphate
(v)	$\begin{split} &M_{r} \text{ butan-1-ol} = 74, \text{ chlorobutane} = 92.5 (1) \text{ ;} \\ &Moles \text{ butan-1-ol} = 10/74 (=0.135) (1) \text{ ;} \\ &moles \text{ chlorobutane} = 2/92.5 (=0.022) (1) \text{ ;} \\ &\mathfrak{moles} = 0.022 \times 100/0.135 = 16\% (1) \text{ ;} \\ &\mathfrak{moles} \text{ or} \\ &M_{r} \text{ butan-1-ol} = 74, \text{ chlorobutane} = 92.5 (1) \text{ ;} \\ &Moles \text{ butan-1-ol} = 10/74 (= 0.135) (1) \text{ ;} \\ &0.135 \times 92.5 (= 12.4875) (1) \text{ ;} \\ &\mathfrak{moles} = 2/12.4875 \times 100 = 16\% (1) \text{ ;} \end{split}$	4	apply ecf for moles of butan-1-ol / 1-chlorobutane from an incorrect M _r value. allow a final answer of between 15.7 to 16.3%, which is obtained if numbers have been rounded at an earlier stage. allow 2 or more sf give 1 mark for 2/10x100 = 20%
	Total	26	

F332			Mark Sche	me	June 2009	
Que	stion		Expected Answers	Marks	Additional Guidance	
3	(a)	(i)	refining oil / generating electricity / processes in a petrochemical plant / producing steel / heating limestone / fermentation (1) ;	1	allow burning a fossil fuel provided it is the context of another industrial activity eg in a factory allow making cement ignore deforestation	
		(ii)	any one pair from: NO/ NO ₂ / NO _x / SO ₂ / SO ₃ / SO _x (1) ; causes acid rain / causes breathing problems (1) ; or unburnt hydrocarbons / Carbon monoxide / NO _x (1) ; causes smog (1) ; or $CO_2 / NO_x / C_xH_y (1)$; causes greenhouse effect / global warming (1) ; or $NO_x / SO_x / CO / aromatics (1)$; causes toxic effects on humans (1) ;	2	A correct pollutant gas scores the first mark. The second mark depends on the first. do not allow harmful instead of toxic	

Que	stion		Expected Answers	Marks	Additional Guidance
	(b)		any five from:	5	
			(a) UV / visible from the Sun is absorbed by the Earth / heats the Earth(1) ;		(a) do not allow light or sunlight instead of UV / visible (b) & (c) allow long-wave or low frequency radiation do not
			(b) Earth radiates/emits IR (1) ;		allow reflects IR.
			(c) CO_2 absorbs IR (1);		(c) allow answers suggesting other radiations are
			(d) which causes <u>bonds</u> to vibrate (more) (1) ;		absorbed by the CO ₂
			(e) more CO_2 means more radiation is absorbed (1);		(c) and (e) allow 'greenhouse gases' for CO ₂
			(f) this energy is transferred to KE that increases atmospheric temperature / molecules radiate IR that warms Earth / atmosphere (1) ;		
			QWC for connection of ideas:	•	
			Earth absorbing radiation or being warmed then Earth emitting radiation or CO ₂ absorbs IR then bonds vibrate or CO ₂ absorbs IR then energy is transferred to the atmosphere.		
	(c)	(i)	the ocean water is too deep to be disturbed by a rock- slide / pressure under the ocean keeps the CO_2 in place(1);	1	allow rock slides (of this type) don't occur in the ocean.

Question		Expected Answers	Marks	Additional Guidance
	(ii	any two from:	2	do not allow just fewer cars
		burn less fossil fuel (1);		
		named alternative power source (1);		
		less deforestation / plant more trees (AW) / more photosynthesis (1) ;		
		reacting the CO_2 with lime/other suitable named solid (1);		
		disposing of it in an old mine / well / other suitable disposal site (1) ;		
		Total	12	

F332			Mark Sch	June 2009	
Question			Expected Answers	Marks	Additional Guidance
4	(a)		addition (1) ;	1	do not allow additional ignore electrophilic and radical. do not allow nucleophilic.
	(b)		CH—CH ₂ (1);	1	 ignore brackets and n ignore ambiguous attachments and small errors in benzene structure. do not allow more than one simplest repeat unit allow more displayed versions
	(c)	(i)	(colour change) red / brown / orange / yellow (1) ; to colourless (1) ;	2	Any combination of these colours but no others do not allow "clear" instead of "colourless". answers like 'it turns colourless' gain 1 mark.
		(ii)	carbocation (1);	1	allow carbonium ion.allow minor spelling errordo not allow bromonium ion
		(iii)	carbocation / intermediate 1 is attacked by nucleophiles / species carrying negative charge / Br^- / Ct^- (1) ; both Br^- and Ct^- attack carbocation / intermediate 1 (1) ; attack by Br^- gives compound A / Attack by Ct^- gives compound B (1) ;	3	allow marks from suitable diagrams allow 'attract' for 'attack' provided it leads to a reaction.
	(d)	(i)	HBr / hydrogen bromide / hydrobromic acid (1) ;	1	ignore state symbols
		(ii)	(partially) positively charged/ electron deficient reagent (AW) (1) ;	2	
			bonds by accepting a pair of electrons (1);		ignore lone in lone pair

1002					
Question			Expected Answers	Marks	Additional Guidance
		(iii)	water / steam (1) ;	3	allow sulfuric acid instead of phosphoric acid
			phosphoric acid catalyst (1) ;		ignore concentrations
			high temperature and pressure/300C and 60atm (1);		ignore inert catalyst supports such as alumina
					allow temps 200-400C and pressure above 1atm
					do not give a mark for high temperature and pressure without water/steam
	(e)	(i)	C to which the OH is joined is itself joined to two other Cs /	1	can refer to R groups.
			one H on C to which OH is bonded/ 2 alkyl groups on		allow "it" for OH
			C (1),		ignore OH in middle of chain
		(ii)	any four from:	4	
			the oxidation produces a ketone/ propanone (1);		
			absorption within 1705 to 1725 (cm ^{-1}) (1) ;		allow 'around/approximately 1700'.
			shows presence of C=O bond (1);		accept one number from 1705 and 1725
			there is no peak/trough between 3200 to 3640 (cm ⁻¹)		
			(1);		accept one number between 3200 and 3640
			indicating there is no O-H bond (1) ;		allow 2 marks for correctly indicating the peak at 1720 due to C=O on the IR spectrum
					allow 2 marks for indicating that there is no peak at 3200 due to O-H on the IR spectrum
					ignore references to other peaks/troughs
			Total	19	

Que	stion	Expected Answers	Marks	Additional Guidance
5	(a)	<pre>meaning: splitting / breaking down a chemical / molecule / bond(1) ; using <u>energy</u> absorbed from UV / visible / light(1) ; example: splitting of a water molecule by UV (radiation) (1) ;</pre>	3	The example quoted must be the one taken from the article (break-up of water by UV radiation). It can be represented by an equation. the second mark can be scored in either part by mention of hv e.g. on the equation arrow
	(b)	1. formation of oxygen atoms from dissociation of water by UV or dissociation of O_2 by UV / $O_2 \rightarrow 2O(1)$; 2. oxygen atoms/radicals join to make $O_2 / O + O \rightarrow O_2 / O_2$ formed by photosynthesis (1); 3. O_2 plus O gives $O_3 / O_2 + O \rightarrow O_3(1)$; 4. ozone is decomposed / $2O_3 \rightarrow 3O_2 / O_3 \rightarrow O_2 + O(1)$; 5. absorbs UV from sunlight (1); QWC mark for connection of ideas: idea of O atoms formed and then being used in another reaction	5	allow H ₂ O → H ₂ + O / H ₂ O→ 2H + O UV or hv not needed. allow 'photodissociation' instead of 'by UV'. for full marks at least one of marking points 2, 3 and 4 must be given as an equation. allow frequency values in the range 1 x 10 ¹⁵ to 1 x 10 ¹⁷ Hz instead of UV. mark independently
	(c)	converting both values to the same units (2 ppm = 0.0002% / 20.948% = 209480 ppm) (1) ; dividing oxygen value by methane value (20.948/0.0002 or 209480/2 = 104740) (1) ;	2	allow 3 sf or more mark independently

Question	Expected Answers	Marks	Additional Guidance
(d)	FeS2 is oxidised (1); O_2 and $Fe_2O_3/FeO/Fe_3O_4$ in an equation (1);completely correct equation (1); $4FeS_2 + 11O_2 \rightarrow 2Fe_2O_3 + 8SO_2$ $3FeS_2 + 8O_2 \rightarrow Fe_3O_4 + 6SO_2$ $FeS_2 + 2.5O_2 \rightarrow FeO + 2SO_2$	3	
(e)	the temperature in the troposphere decreases as you move away from the Earth's surface (1); because hot gases near the Earth's surface rise & cool / higher concentrations of greenhouse gases / named gas lower down absorb more IR from Earth / the atmosphere is heated by the Earth low down(1); within the stratosphere the temperature of the atmosphere rises as you move away from the Earth (1); due to exothermic reactions (1);	4	mark independently candidates can give figures for altitudes instead of troposphere / stratosphere
(f)	the concentration of gases is higher in the troposphere / troposphere is more dense / pressure is higher ORA (1); so there are more collisions per second / more frequent collisions (in the troposphere) (1);	2	do not allow 'more collisions' or 'more chance of collisions'
	Total	20	