Question			Answer	Marks	Guidance
1	(a)	(i)	KE change: $\frac{1}{2} \times 0.6 \times\left(7.5^{2}-5.5^{2}\right)$ $=7.8 \mathrm{~J}$ GPE change: $0.6 \times 9.8 \times 1.5=8.82 \mathrm{~J}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { [3] } \end{aligned}$	Difference of two KE terms Allow -8.82J
1	(a)	(ii)	W is work done against resistance $\begin{aligned} & 7.8=8.82-W \\ & \text { so } W=1.02 \mathrm{~J} \end{aligned}$	M1 A1 [2]	W-E all terms. Allow sign errors FT (i) only. Also FT only if mod (their KE) $<\bmod$ (their PE) -1.02 gets M1A0; 16.62 gets M1A0
1	(a)	(iii)	Average resistance is F so $F \times 1.5=1.02$ so $F=0.68$ Power is 0.68×5.5 $=3.74 \text { so } 3.74 \mathrm{~W}$	M1 A1 M1 A1 [4]	Use of WD $=F s$ OR find $a=8.667$ and use $\mathrm{F}=0.6 g-0.6 \times 8.667$ May be implied. FT (ii) Use of $P=F v$ any calculated F cao
1	(b)	(i)	$\begin{aligned} & R=m g \cos 40 \\ & F_{\max }=m g \sin 40 \\ & F_{\max }=\mu R \\ & \text { so } \mu=\frac{m g \sin 40}{m g \cos 40}=\tan 40 \end{aligned}$	B1 B1 M1 E1 [4]	Seen or implied Seen or implied Use of $F=\mu R$: substitute F and R This is the minimum amount of working needed to earn the E1 Must see explicit evidence of method Note: g omitted, treat as MR
1	(b)	(ii)	EITHER $\begin{aligned} & \tan 40 \times 0.8 \times 9.8 \times \cos 20 \\ & \times 3(=18.545) \\ & (+) 0.8 \times 9.8 \\ & \times 3 \sin 20(=8.044) \\ & =26.5897 \ldots \text { so } 26.6 \mathrm{~J}(3 \text { s.f. }) \end{aligned}$	B1 M1 B1 M1 A1	Use of $F_{\text {max }}=\mu R$ with tan 40 and $\cos 20$ Use of WD = Fs NOTE: This mark may be awarded here or for use in PE term Use of $m g h \quad$ Allow sin \leftrightarrow cos interchange Two relevant terms added Cao Allow 26.7 Allow 27 Omission of g can get B0M1B1M1A0

Question			Answer	Marks	Guidance
			$\begin{aligned} & \text { OR } \\ & \tan 40 \times 0.8 \times 9.8 \times \cos 20(=6.182) \\ & (+) 0.8 \times 9.8 \times \sin 20(=2.68) \\ & (=8.8632444 \ldots) \\ & \text { WD is } 3 \times 8.8632444 \ldots \\ & =26.5897 \ldots \text { so } 26.6 \mathrm{~J}(3 \text { s.f. }) \end{aligned}$	B1 B1 M1 M1 A1 [5]	Use of $F_{\max }=\mu R$ with tan 40 and $\cos 20$ Allow $\sin \leftrightarrow$ cos interchange Two relevant forces added Use of WD = Fs (for at least one of forces) cao Omission of g can get B0B1M1M1A0
2	(i)		$\begin{aligned} & \text { a.c. moments about B } \\ & 10 T_{\mathrm{C}}-15 \times 2=0 \\ & \text { so } T_{\mathrm{C}}=3 \text {. Tension at } \mathrm{C} \text { is } 3 \mathrm{~N} \\ & \uparrow T_{\mathrm{C}}+T_{\mathrm{B}}-15=0 \\ & \text { so } T_{\mathrm{B}}=12 \text {. Tension at } \mathrm{B} \text { is } 12 \mathrm{~N} \end{aligned}$	M1 A1 M1 F1 [4]	Moments with all forces present, no extra forces. May take moments again
2	(ii)		a.c. moments about A $25 T \sin 30-15 \times 17=0$ so $T=20.4$ At A Let force \uparrow be $Y \mathrm{~N}$ $\begin{aligned} & \uparrow Y+T \sin 30-15=0 \text { so } Y=4.8 \\ & \rightarrow X=T \cos 30=17.6669 \ldots \mathrm{~N} \\ & \sqrt{4.8^{2}+(T \cos 30)^{2}} \\ & =18.3073755 \ldots \text { so } 18.3 \mathrm{~N}(3 \text { s.f. }) \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ {[6]} \end{gathered}$	Attempt at moments with resolution; allow $\cos \leftrightarrow \sin$ error. All forces present, no extra forces cao FT (can take moments about C) FT Need not be evaluated cao
2	(iii)		Let force be P. a.c. moments about D. $8 \times 15-12 \times P=0$ so $P=10$ on point of tipping Using $F_{\max }=\mu R$ on point of slipping with $R=15$ gives $F_{\max }=0.65 \times 15=9.75$ so slips first	M1 A1 M1 B1 A1 E1 [6]	Moments about D with all forces present, no extra forces cao cao cao and WWW

Question			Answer	Marks	Guidance
3	(a)	(i)	$300\binom{\bar{x}}{\bar{y}}=72\binom{-6}{3}+192\binom{4}{-6}+36\binom{10}{-4}$ $\begin{aligned} & \binom{\bar{x}}{\bar{y}}=\binom{696}{-1080} \\ & \text { so } \bar{x}=2.32 \\ & \bar{y}=-3.6 \end{aligned}$	B1 M1 B1 A1 A1 [5]	Correctly identifying the position of the c.m of triangle EFH $(10,-4)$ A systematic method for at least 1 cpt Either all x or all y values correct or 2 vector terms correct or allow one common error in both components, e.g. one wrong mass, misunderstanding of c.m. of triangle Allow FT for either if only error is common to both
3	(a)	(ii)	centre of mass is at G $\begin{aligned} & \tan \alpha=\frac{9.6}{1.43} \\ & \text { so } \alpha=33.8376 \ldots \text { so } 33.8^{\circ}(3 \text { s.f. }) \end{aligned}$		Identifying correct angle. May be implied At least 1 relevant distance found. FT (i) Use of $\arctan \frac{9.6}{14.32}$ or $\arctan \frac{14.32}{9.6}$ o.e. cao or $180^{\circ}-33.8^{\circ}$
3	(b)	(i)	Marking given tension and thrust Marking all other forces internal to rods acting on A, B and C (as T or C)	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { [2] } \end{aligned}$	Each labelled with magnitude and correct direction Need ALL forces at A, B and C. Need pairs of arrows on $A B, A C$ and $B C$

Question			Answer	Marks	Guidance
3	(b)	(ii)	Equilibrium at $\mathrm{A} \uparrow$ $T_{\mathrm{AB}} \cos 30-18=0$ $T_{\mathrm{AB}}=12 \sqrt{3}$. Force in AB: $12 \sqrt{3} \mathrm{~N}(\mathrm{~T})$ $\mathrm{A} \leftarrow$ $\begin{aligned} & T_{\mathrm{AC}}+T_{\mathrm{AB}} \cos 60+5=0 \\ & T_{\mathrm{AC}}=-(5+6 \sqrt{3}) . \end{aligned}$ Force in AC: $(5+6 \sqrt{3}) \mathrm{N}(\mathrm{C})$ At B in direction $A B$ $T_{\mathrm{BR}} \cos 60-T_{\mathrm{AB}}=0$ so $T_{B R}=24 \sqrt{3}$ At B in direction $B C$ $\begin{aligned} & T_{\mathrm{BC}}-T_{\mathrm{BR}} \cos 30=0 \\ & T_{\mathrm{BC}}=36 . \text { Force in BC: } 36 \mathrm{~N}(\mathrm{~T}) \end{aligned}$	M1 A1 M1 F1 M1 F1 A1 [7]	Equilibrium at one pin-joint 20.8 Sign consistent with tension on their diagram -15.39 FT their $T_{\text {AB }}$ Allow FT Other methods are possible, but award this M1 only for a complete method that would lead to T_{BC} cao WWW T/C all correct
4	(i)		$\begin{aligned} & 26 t=3 \times 13 \\ & t=1.5 \text { so } 1.5 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	Use of $F t=m(v-u)$ or N2L to find $a(=26 / 3)$ and use $v=u+a t$ cao
4	(ii)		PCLM $\begin{aligned} & 10 \times 0+3 \times 13=10 v_{Q}+3 v_{\mathrm{P}} \\ & 39=10 v_{\mathrm{Q}}+3 v_{\mathrm{P}} \end{aligned}$ NEL $\begin{gathered} \frac{v_{\mathrm{Q}}-v_{P}}{0-13}=-e \\ v_{\mathrm{Q}}-v_{P}=13 e \end{gathered}$ $\begin{gathered} v_{\mathrm{Q}}=3(1+e) \\ v_{\mathrm{P}}=3-10 e \end{gathered}$	M1 A1 M1 A1 M1 B1 E1 [7]	Use of PCLM Any form Use of NEL. Allow sign errors but not inversion Any form Eliminating one of v_{Q} or v_{P} OR allow substitution of given result in one equation and check both answers in other equation cao; aef Properly shown

Question		Answer	Marks	Guidance
4	(iii)	Need $v_{\mathrm{P}}<0$ so $3-10 e<0$ Hence $\frac{3}{10}<e \leq 1$	M1 A1 [2]	Accept \leq cao (Allow $e \leq 1$ omitted) Correct answer www gets $2 / 2$
4	(iv)	When $e>\frac{3}{10}$, its speed is $10 e-3$ We require $(10 e-3)>3(1+e)$ $\text { so } 7 e>6 \text { and so } \frac{6}{7}<e \leq 1$	M1 M1 A1 A1 [4]	FT their v_{Q} SC1 for $(3-10 e)> \pm 3(1+e)$ FT their v_{Q} cao. Allow $e>\frac{6}{7}$ (0.857) Correct answer www gets $4 / 4$
4	(v)	Either $v_{\mathrm{Q}}=4.5 \text { and } v_{\mathrm{P}}=-2$ When they collide the speed of Q is -4.5 and of P is 2 PCLM $10 \times-4.5+3 \times 2=13 V$ so $V=-3$ and velocity is $-3 \mathrm{~m} \mathrm{~s}^{-1}$	M1 M1 M1 A1 [4]	Substitute $e=0.5$; FT their v_{Q} Change signs of their velocities Use of PCLM Allow sign errors cao; OR $3 \mathrm{~m} \mathrm{~s}^{-1}$ to the right or use argument about final LM is -ve of original LM
		Or $10(-3(1+e))+3(10 e-3)=13 V$ $-39=13 V$ so $V=-3$ and velocity is $-3 \mathrm{~m} \mathrm{~s}^{-1}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [4] } \\ & \hline \end{aligned}$	Use of PCLM; Allow sign errors ; FT their v_{Q} Change signs of their velocities Simplify cao; OR $3 \mathrm{~m} \mathrm{~s}^{-1}$ to the right
4	(vi)	$3(-3-2)=-15 \mathrm{Ns}$	B1 [1]	FT 3(their $(v)-2)$ Using $10(-3+4.5)=15$ gets B0 until it leads to correct answer

