LEVEL 2 CERTIFICATE Further Mathematics

8360/1 - Paper 1 Non-calculator

Mark scheme

June 2018

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M

M dep

A

B
B
B dep
ft

SC
oe
Or equivalent. Accept answers that are equivalent.
eg, accept 0.5 as well as $\frac{1}{2}$

[a, b]

Accept values between a and b inclusive.
3.14...

Method marks are awarded for a correct method which could lead to a correct answer.

A method mark dependent on a previous method mark being awarded.

Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

Marks awarded independent of method.

A mark that can only be awarded if a previous independent mark has been awarded.

Follow through marks. Marks awarded following a mistake in an earlier step.

Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.

Accept answers which begin 3.14 eg $3.14,3.142,3.1416$

Examiners should consistently apply the following principles.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods
Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the candidate intended it to be a decimal point.

Alternative method 1		
$\frac{6+(-12)}{2}$ or $\frac{-2+\mathrm{b}}{2}$	M1	oe eg $18 \div 2=9$ and $6-9$ eg $6 \times 2=12$ and $-2+12$ These come from distances of 18 and 6, as seen in a diagram and used correctly
$\mathrm{a}=-3$	A1	
$\mathrm{b}=10$	A1	

Alternative method 2

2

$\mathrm{a}-(-12)=6-\mathrm{a}$ or $4-\mathrm{b}=-2-4$	M1	oe eg $4+4--2$
$\mathrm{a}=-3$	A1	
$\mathrm{b}=10$	A1	

Alternative method 3

eg $6-(-12)=2(a--12)$ eg $-2-b=2(-2-4)$	M1	for using an equation relating the "gap" between the points
$a=-3$	A1	
$b=10$	A1	

Additional guidance

Either answer correct, but no working, implies the M mark, eg $a=-3, b=6$ scores M1 A1 A0 Correct answer seen with no working scores full marks $\mathrm{a}=10$ and $\mathrm{b}=-3$ (correct values but the wrong way round) with no working scores SC1

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

$\left(\begin{array}{rr|}4 & 16 \\ -8 & 17\end{array}\right) \quad$ B2 $\left.\quad \begin{array}{l}\text { B1 for any two or three correct elements in } \\ \text { the correct position in a } 2 \times 2 \text { matrix }\end{array}\right\}$

Additional Guidance
Correct answer followed by further work, eg $\binom{20}{9}$ scores B1 only
3
Matrices multiplied the wrong way round can score SC1 if correct
$B A=\left(\begin{array}{cc}14 & -14 \\ 7 & 7\end{array}\right)$
Condone no brackets around the numbers in their 2×2 matrix Ignore any commas that appear in their 2×2 matrix

Do not follow through on any misreads of the numbers in the given matrices

Q	Answer	Mark	Comments	
4	Alternative method 1			
	$1.25 \times 4 \mathrm{x}$ or 5 x	M1	oe	
	$0.6 \times 7 \mathrm{x}$ or 4.2 x	M1	oe	
	their $5 \mathrm{x}-$ their $4.2 \mathrm{x}=28$ or $0.8 \mathrm{x}=28$	M1dep	oe eg their $5 x=$ their $4.2 x+28$ dep upon at least one of previous M marks earned	
	$\mathrm{x}=35$	A1		
	Alternative method 2			
	two numbers in the ratio 4:7	M1		
	correct increase by 25% and decrease by 40% calculations and comparison with 28	M1dep	If difference is not 28 , then fir must be clearly rejected	numbers
	second trial with correct calculations and comparison	M1dep	correct first trial means 2nd marks scored automatically	d 3rd M
	$\mathrm{x}=35$	A1		
	Additional Guidance			
	Mark the better of their two versions if they try both methods.			
	In alt $2 \ldots$ for the 2nd M1 (dep on 1st M1) ... the \% calculations must be correct. If the difference is not 28 they must reject them. Attempting another two \% calculations is sufficient evidence of this.			
	In alt $2 \ldots$ for the 3rd M1 (dep on the first two M1's) ... the difference must be closer than their first attempt. They can have more than one attempt at this so as to eventually score the 3rd M1. To score this mark they need to indicate clearly that this further attempt is better than their first attempt.			
	In alt 2 ... if it isn't clear in which order they have done their attempts (eg very untidy working written all over the page) and they do not indicate which is the better attempt, then they can score a maximum of 2 marks.			

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

5	$\left(\mathrm{x}^{3}\right)+5 \mathrm{x}^{2}+\mathrm{kx}-3 \mathrm{x}^{2}-15 \mathrm{x}(-3 \mathrm{k})$	M1	allow one sign error in the x^{2} or x terms	
	their $(5-3)=$ their $(\mathrm{k}-15)$	M1dep	$5 x^{2}-3 x^{2}=k x-15 x$ on its own, is not enough for M1dep	
	17	A1		
	Additional Guidance			
	For the first M1, we do not need to see the x^{3} term or the $-3 k$ term, but we do need to see the other 4 terms (3 terms, if they combine the x^{2} terms). The terms of the expansion might appear in a grid, which can score the first M1 Mark positively ... terms in a grid might differ from terms written as a string of terms ... mark the better version.			

6	$(x+1)^{2}+(y-2)^{2}=25$	B1	tick in 3rd box	
	Additional Guidance			

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

Alternative method 1			
reflex angle $A O C=2 \times 2 \mathrm{x}$ or 4 x	M 1		
their $4 \mathrm{x}+\mathrm{x}+75=360$	M1dep	oe If they start with this equation, the first M1, for reflex angle $A O C=4 \mathrm{x}$, is implied	
$(\mathrm{x}=) 57$	A 1		
Alternative method 2			
reflex angle $A O C=360-(\mathrm{x}+75)$ or $285-\mathrm{x}$	M1	oe	
$360-(\mathrm{x}+75)=2(2 \mathrm{x})$ or their $285-\mathrm{x}=2(2 \mathrm{x})$	M1dep	oe	
$(\mathrm{x}=) 57$			

Alternative method 3

angle at circumference $=180-2 \mathrm{x}$	M1	creating a cyclic quadrilatera
$\begin{aligned} & x+75=2(180-2 x) \\ & \text { or } x+75=360-2(2 x) \end{aligned}$	M1dep	oe
$(\mathrm{x}=)^{57}$	A1	
Alternative method 4		
$\text { angle at circumference }=\frac{x+75}{2}$	M1	oe creating a cyclic quadrilatera
$\frac{x+75}{2}+2 x=180$	M1dep	oe $\frac{x}{2}+\frac{\text { their } 75}{2}+2 x=180 \text { scores }$
$(\mathrm{x}=) 57$	A1	
Additional Guidance		
$4 \mathrm{x}=\mathrm{x}+75($ ans $\mathrm{x}=25)$ and $\mathrm{x}+75+2 \mathrm{x}=180($ ans $\mathrm{x}=35)$ both score 0 marks		

Q Answer Mark Comments 8 $4-\sqrt{5}+8 \sqrt{5}-2 \sqrt{5} \sqrt{5}$ M1 oe allow one incorrect term in a four term expansion $-6+7 \sqrt{5}$ Additional Guidance Any incorrect further work loses the A mark, so they can only score M1 A0

Alternative method 1

$14-(2 x)^{2}$ or $14-4 x^{2}$	M1	or $14-(2 x)^{2}=5$ or $14-4 x^{2}=5$
$14-5=(2 x)^{2}$ or $9=4 x^{2}$ or $9-4 x^{2}=0$ or $4 x^{2}-9=0$ or $(2 x+3)(2 x-3)=0$	M1dep	
$(x=) \frac{3}{2}$ or 1.5	A1	
$(x=)-\frac{3}{2}$ or -1.5	A1	

Alternative method 2

9

$14-x^{2}=5$ and $x= \pm 3$	M 1	
$2 \mathrm{x}= \pm 3$	M1dep	
$(\mathrm{x}=) \frac{3}{2}$ or 1.5	A 1	
$(\mathrm{x}=)-\frac{3}{2}$ or -1.5	A 1	

Additional Guidance

A final answer of $\sqrt{\frac{9}{4}}$ scores M1 M1 A0 A0
A final answer of $\pm \sqrt{\frac{9}{4}}$ scores M1 M1 A1 A0

Q	Answer	Mark	Comments
10	A correct first step using algebra	M1	Here are some of the possible alternatives $\begin{array}{ll} \frac{1}{x}=y\left(4-\frac{3}{y}\right) & \text { multiplying through by } y \\ 1=x y\left(4-\frac{3}{y}\right) & \text { multiplying through by } x y \\ 1=4 x y-\frac{3 x y}{y} & \text { multiplying through by } x y \\ y=4 x y^{2}-3 x y & \begin{array}{l} \text { multiplying through by } x y^{2} \end{array} \\ \frac{1}{x y}=\frac{4 y-3}{y} & \begin{array}{l} \text { making the RHS an } \\ \text { algebraic fraction } \end{array} \\ \frac{1+3 x=4}{x y} & \begin{array}{r} \text { rearranging and making the } \\ \text { LHS an algebraic fraction } \end{array} \end{array}$
	Further correct algebra which leads to an equation that is one step from the final answer.	M1dep	Following two of the above alternatives ... $\begin{aligned} & y=4 x y^{2}-3 x y \\ & y=x\left(4 y^{2}-3 y\right) \quad \text { M1dep gained } \\ & \\ & \frac{1+3 x}{x y}=4 \\ & 1+3 x=4 x y \\ & 1=4 x y-3 x \\ & 1=x(4 y-3) \quad \text { M1dep gained } \end{aligned}$
	A correct final answer in any form	A1	$\begin{array}{ll} x=\frac{1}{4 y-3} & x=\frac{-1}{3-4 y} \\ x=\frac{y}{4 y^{2}-3 y} & x=\frac{-y}{3 y-4 y^{2}} \\ x=\frac{1}{y\left(4-\frac{3}{y}\right)} & x=\frac{-1}{y\left(\frac{3}{y}-4\right)} \\ x=\frac{1}{\left(4-\frac{3}{y}\right)} \div y & \end{array}$

Additional Guidance
There are many ways of scoring the first M mark. They do not need to give any reasons but you need to check that what they do is valid. For the M1dep mark you must check that their algebra is correct and will lead to a result that is one step from the final answer. 'One step from ...' means that when they divide through, they have a correct version where x is the subject. Some of the final answers are more compact than others, but we didn't ask for any simplification so we have to accept a correct answer in any form. ... and, finally, one to look out for ... correct answer from wrong working ... 0 marks $\frac{1}{\mathrm{xy}}=4-\frac{3}{\mathrm{y}} \rightarrow \mathrm{xy}=\frac{1}{4}-\frac{\mathrm{y}}{3} \quad \rightarrow \quad \mathrm{x}=\frac{1}{4 \mathrm{y}}-\frac{1}{3} \quad \rightarrow \quad \mathrm{x}=\frac{1}{4 \mathrm{y}-3} \quad \text { (creative thinking !) }$

Q	Answer	Mark	Comments
11	$4 \mathrm{x}+3$ or gradient $=-5$ seen	M1	
	$4 \mathrm{x}+3=-5$	M1dep	
	$\mathrm{x}=-2$	A1	
	$y=-7$	A1ft	ft their x only if M2 earned
	Additional Guidance		

$\frac{5}{3} \times 15$ or 25 seen as the length of $O B$ or the coordinates of B	M1	
$\text { gradient } A B=\frac{0-\text { their } 25}{15-0} \text { or }-\frac{5}{3}$	M1	oe
gradient $B C=-1 \div\left(\right.$ their $\left.-\frac{5}{3}\right)$ or $\frac{3}{5}$	M1	oe
$y=\frac{3}{5} x+25$	A1	oe eg $y=\frac{15}{25} x+25$ or $5 y=3 x+125$

Additional Guidance

We must see $\mathrm{y}=$ \qquad for A1 (or any other correct equation) Look for this in their working if it isn't written on the answer line.

A sign error in their gradient $A B$, after a correct expression, can be recovered.
eg gradient $A B=\frac{0-25}{15-0}=\frac{25}{15}=\frac{5}{3}$
gradient $B C=\frac{3}{5}$ (positive gradient because they can see it from the diagram)
equation $B C$ is $y=\frac{3}{5} x+25 \quad \ldots$ this scores 4 marks
similarly, recovery can be from ...
gradient $A B=\frac{25}{15}=\frac{5}{3} \quad \ldots$ without seeing $\frac{0-25}{15-0}$
... and can still lead to 4 marks

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

Alternative method 1

$3 x+5=\frac{2}{x} \quad \text { or } \quad x(3 x+5)=2$	M1	oe
$3 x^{2}+5 x-2(=0)$ or $3 x^{2}+5 x=2$	M1dep	
$(3 x+a)(x+b)(=0)$	M1dep	$a b=-2$ or $a+3 b=5$
$(3 x-1)(x+2)(=0)$	A1	
$\begin{aligned} & \begin{array}{l} x=\frac{1}{3} \quad x=-2 \quad \text { or } \quad x=\frac{1}{3} \quad y=6 \\ \text { or } \quad x=-2 \quad y=-1 \end{array} \\ & \hline \end{aligned}$	A1	
$\begin{array}{lllll} \mathrm{x}=\frac{1}{3} & \mathrm{x}=-2 & & x=\frac{1}{3} & \mathrm{y}=6 \\ & & \text { or } & \\ y=6 & y=-1 & & x=-2 & y=-1 \end{array}$	A1	either correct x's and correct y's or correct coordinate pairs

Alternative method 2

$3 x+5=\frac{2}{x} \quad \text { or } \quad x(3 x+5)=2$	M1	oe
$3 \mathrm{x}^{2}+5 \mathrm{x}-2(=0)$ or $3 \mathrm{x}^{2}+5 \mathrm{x}=2$	M1dep	
$x=\frac{\left.-5 \pm \sqrt{[}(5)^{2}-4(3)(-2)\right]}{2(3)}$	M1dep	allow one sign error ... but the 2×3 term must be beneath the full numerator
$x=\frac{-5 \pm 7}{6}$	A1	
$\begin{aligned} & x=\frac{1}{3} \quad x=-2 \quad \text { or } \quad x=\frac{1}{3} \quad y=6 \\ & \text { or } \quad x=-2 \quad y=-1 \end{aligned}$	A1	
$\begin{array}{lllll} \mathrm{x}=\frac{1}{3} & \mathrm{x}=-2 & & x=\frac{1}{3} & \mathrm{y}=6 \\ & & \text { or } & \\ y=6 & y=-1 & & x=-2 & y=-1 \end{array}$	A1	either correct x's and correct y's or correct coordinate pairs

Alternative method 5

$y=3\binom{2}{y}+5 \text { or } \frac{y(y-5)}{3}=2$	M1	oe
$y^{2}-5 y-6=0$ or $y^{2}-5 y=6$	M1dep	
$y=\frac{5 \pm \sqrt{ }\left[(-5)^{2}-4(1)(-6)\right]}{2(1)}$	M1dep	allow one sign error ... but the 2×1 term must be beneath the full numerator
$y=\frac{5 \pm 7}{2}$	A1	
$y=6 \quad y=-1 \quad \text { or } \quad y=6 \quad x=\frac{1}{3}$ or $y=-1 \quad x=-2$	A1	
$x=\frac{1}{3} \quad x=-2$ $x=\frac{1}{3} \quad y=6$ or $y=6 \quad y=-1$ $x=-2 \quad y=-1$	A1	either correct x's and correct y's or correct coordinate pairs

Alternative method 6

$y=3\binom{2}{y}+5 \text { or } \frac{y(y-5)}{3}=2$	M1	oe
$y^{2}-5 y-6=0$ or $y^{2}-5 y=6$	M1dep	
$(y-5 / 2)^{2} \ldots \ldots \ldots \ldots \ldots$	M1dep	
$y-5 / 2= \pm 7 / 2$	A1	
$\begin{aligned} & y=6 \quad y=-1 \quad \text { or } y=6 \quad x=\frac{1}{3} \\ & \text { or } y=-1 \quad x=-2 \end{aligned}$	A1	
$\begin{array}{lllll} \mathrm{x}=\frac{1}{3} & \mathrm{x}=-2 & & x=\frac{1}{3} & y=6 \\ y=6 & y=-1 & \text { or } & & x=-2 \end{array}$	A1	either correct x's and correct y's or correct coordinate pairs

Additional Guidance

Trial and improvement ... 0 marks No working shown 0 marks The instructions were clearly stated in the question.

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

$2-x$ or $x-2$	$M 1$	do not award M1 if you see evidence of incorrect method for finding a linear expression
$y=2-x$ accurately drawn	M1	
3.4	A1	accept 3.3 to 3.5
0.6	A1	accept 0.5 to 0.7

Additional Guidance

For the first M1, start by looking for evidence of a correct method.

$$
\text { eg } x^{2}-4 x+2+3 x-x^{2}=-x+2
$$

or

$$
x^{2}-4 x+2=0 \rightarrow x^{2}-3 x-x+2=0 \rightarrow-x+2=3 x-x^{2}
$$

Attempts to solve $\mathrm{x}^{2}-4 \mathrm{x}+2=0$ by using the quadratic formula or by completing the square or by drawing a new quadratic graph (for $y=x^{2}-4 x+2$) score 0 marks
You might see work which uses the quadratic formula or completing the square which leads to answers of $2 \pm \sqrt{ } 2 \ldots$ and if this follows working using a correct method to find the linear graph, it can be ignored (they could be using it as a check on their answers obtained graphically), but if it looks like it is their main method, then award 0 marks, as stated above..
Ignore any y coordinates that might accompany the final x values.

\mathbf{Q}	Answer	Mark	Comments

16

Q	Answer	Mark	Comments	
17 (a)	$\begin{aligned} f(2) & =(2)^{3}+8(2)^{2}+5(2)-50 \\ & =8+32+10-50=0 \end{aligned}$	B1	substitutes $x=2$ and verifies that $f(2)=0$... the terms must be evaluated	
	Additional Guidance			
	Using the factor theorem is essential. Using long division here scores M0			

Alternative method 1

$x^{3}+8 x^{2}+5 x-50$ $\equiv(x-2)\left(x^{2}+k x+25\right)$	M1	Sight of a 3 term quadratic with x^{2} and +25 as the first and last terms
$x^{2}+10 x+25$	A1	
$(x-2)(x+5)^{2}$	A1	oe

Alternative method 2

Substitutes another value into the expression and tests for ' $=0$ '	M1	their value correctly worked out eg $f(1)=-36 \quad f(3)=64$
$(x+5)$	A1	coming from $f(-5)=-125+200-25-50=0$
$(x-2)(x+5)^{2}$	A1	oe

Alternative method 3

17 (b)

Long division of polynomials getting as far as $\mathrm{x}^{2}+10 \mathrm{x} \ldots \ldots$.	M1	
$\mathrm{x}^{2}+10 \mathrm{x}+25$	A1	
$(\mathrm{x}-2)(\mathrm{x}+5)^{2}$	A1	oe

Alternative method 4

Using synthetic division to arrive at $x^{2}+10 x \ldots \ldots$	M 1	2	1	8	5	-50
0	2	20	50			
	1	10	25	0		
$x^{2}+10 x+25$	A1					
$(x-2)(x+5)^{2}$	A1	oe				

Alternative method 5

$x^{3}+8 x^{2}+5 x-50$	$M 1$
$\equiv(x-2)\left(a x^{2}+b x+c\right)$	
$\equiv a x^{3}-2 a x^{2}+b x^{2}-2 b x+c x-2 c$	

	and any two of $\mathrm{a}=1, \mathrm{~b}=10, \mathrm{c}=25$			
	$\mathrm{x}^{2}+10 \mathrm{x}+25$	A1		
	$(x-2)(x+5)^{2}$	A1	oe	
	Additional Guidance			
	This work might appear in 17a ... you can mark it having seen it in 17a unless there is a contradiction with any work in 17b. Also, mark from what you might see in 17 a if there is no work in 17 b			
	Ignore further work which gives answers of $2,-5$ and $-5($ from solving $f(x)=0)$			

19	Alternative method 1		
	sight of $2\left(\mathrm{x}^{2}-8 \mathrm{x} \ldots \ldots\right)$	M1	
	sight of $2(x-4)^{2} \ldots . . .$.	M1dep	
	$2\left[(x-4)^{2}-16\right]+13$ or $2(x-4)^{2}-32+13$ or $2\left[(x-4)^{2}-16+6.5\right]$	M1dep	
	$2(\mathrm{x}-4)^{2}-19$	A1	or $\mathrm{a}=2, \mathrm{~b}=-4, \mathrm{c}=-19$
	Alternative method 2		
	$\mathrm{a}=2$	B1	
	$-16=2 \mathrm{ab} \text { or }-16=4 \mathrm{~b}$ or $13=\mathrm{ab}^{2}+\mathrm{c}$ or $13=2 \mathrm{~b}^{2}+\mathrm{c}$	M1	
	$\begin{aligned} & -16=2 a b \text { and } 13=a b^{2}+c \\ & \text { or } \\ & -16=4 b \text { and } 13=2 b^{2}+c \end{aligned}$	M1dep	oe
	$2(x-4)^{2}-19$	A1	or $\mathrm{a}=2, \mathrm{~b}=-4, \mathrm{c}=-19$
	Additional Guidance		

