Mark Scheme 4733 January 2007

For over-specified answers (> 6SF where inappropriate) deduct 1 mark, no more than once in paper.

1	$22-\mu$	$=-\Phi^{-1}(0.242)$	M1		Standardise with Φ^{-1} , allow +, "1 –" errors, cc, $\sqrt{5}$ or 5^2
	5		A1		Correct equation including signs, no cc, can be wrong Φ^{-1}
		=-0.7	B1		0.7 correct to 3 SF, can be +
	μ = 25.	5	A1	4	Answer 25.5 correct to 3 SF
2	(i)	$900 \div 12 = 75$	B1	1	75 only
	(ii) (a)) True, first choice is random	B1	1	True stated with reason based on first choice
	(b) False, chosen by pattern	B1	1	False stated, with any non-invalidating reason
	(iii)	Not equally likely	M1		"Not equally likely", or "Biased" stated
		e.g. $P(1) = 0$, or triangular	A1	2	Non-invalidating reason
3	Let R b	e the number of 1s	B1		B(90, 1/6) stated or implied, e.g. Po(15)
		$R \sim B(90, 1/6)$	B1		Normal, $\mu = 15$ stated or implied
		\approx N(15, 12.5)	B1		12.5 or $\sqrt{12.5}$ or 12.5^2 seen
		13.5 - 15 [= -0.424]	M1		Standardise, np and npq , allow errors in $$ or cc or both
		$\frac{1}{\sqrt{12.5}}$	A1		$\sqrt{\text{and cc both right}}$
		0.6643	A1	6	Final answer, a.r.t. 0.664. [Po(15): 1/6]
4	(i)	$\overline{w} = 100.8 \div 14 = 7.2$	B1		7.2 seen or implied
	()		M1		Use Σw^2 – their \overline{w}^2
		$\frac{938.70}{14} - \overline{w}^2 \ [= 15.21]$			
		× 14/13	M1		Multiply by $n/(n-1)$
		= 16.38	A1	4	Answer, a.r.t. 16.4
	(ii)	N(7.2, 16.38 ÷ 70)	B1		Normal stated
		[=N(7.2, 0.234)]	B 1√		Mean their \overline{w}
			B1√	3	Variance [their (i) $\sqrt{\div 70}$], allow arithmetic slip
5	(i)	$\lambda = 1.2$	B1		Mean 1.2 stated or implied
		Tables or formula used	M1		Tables or formula [allow ± 1 term, or "1 –"] correctly used
		0.6626	A1	3	Answer in range [0.662, 0.663]
					[.3012, .6990, .6268 or .8795: B1M1A0]
	(ii)	B(20, 0.6626)	M1		B(20, p), p from (i), stated or implied
		20 C ₁₃ $0.6626^{13} \times 0.3374^{7}$	M1		Correct formula for their <i>p</i>
		0.183	A1	3	Answer, a.r.t. 0.183
	(iii)	Let <i>S</i> be the number of stars	B1		Po(24) stated or implied
		$S \sim \text{Po}(24)$	B1		Normal, mean 24
		\approx N(24, 24)	B1√		Variance 24 or 24^2 or $\sqrt{24}$, $\sqrt{1}$ if 24 wrong
		$\frac{29.5 - 24}{\sqrt{24}} [= 1.1227]$	M1		Standardise with λ , λ , allow errors in cc or $$ or both
		$\sqrt{24}$	A1		$\sqrt{\lambda}$ and cc both correct
		0.8692	A1	6	Answer, in range [0.868, 0.8694]

6		Γ - 2 7 2	M1	Use total area = 1
٧	(i)	$\left[ax + \frac{bx^2}{2}\right]_0^2 = 1$	B1	Correct indefinite integral, or convincing area method
		$\begin{bmatrix} 2 \end{bmatrix}_0$	A1 3	Given answer correctly obtained, "1" appearing before
		2a + 2b = 1 AG	AI 3	last line [if $+ c$, must see it eliminated]
		[2 . 3] ²	M1	Use $\int xf(x)dx = 11/9$, limits 0, 2
	(ii)	$\left[\frac{ax^2}{2} + \frac{bx^3}{3}\right]_0^2 = \frac{11}{9}$	B1	Correct indefinite integral
		L 30	A1	Correct equation obtained, a.e.f.
		$2a + \frac{8b}{3} = \frac{11}{9}$	M1	Obtain one unknown by correct simultaneous method
		Solve simultaneously	A1	a correct, 1/6 or a.r.t 0.167
		$a = \frac{1}{6}, b = \frac{1}{3}$	A1 6	b correct, 1/3 or a.r.t. 0.333
	(:::)			
	(iii)	e.g. $P(<11/9) = 0.453$, or	M1	Use $P(x < 11/9)$, or integrate to find median m
		$ax + \frac{bx^2}{2} \Big _{0}^{m} = 0.5, m = 1.303 \text{ or } \frac{\sqrt{13} - 1}{2}$	M1	Substitute into $\int f(x)dx$, $\sqrt{\text{on } a, b}$, limits 0 and 11/9 or m
		$\begin{bmatrix} 1 & 2 \end{bmatrix}_0$ 2	A1	[if finding m, need to solve 3-term quadratic]
		Hence median > mean	$A1\sqrt{4}$	Correct numerical answer for probability or <i>m</i> Correct conclusion, cwo
			AIV 4	·
7	(;)	$H_0: p = 0.35$ [or $p \ge 0.35$]	B1	["Negative skew", M2; median > mean, A2] Each hypothesis correct, B1+B1, allow $p \ge .35$ if .35 used
<i>'</i>	(i)	$H_0: p = 0.35$ [or $p \ge 0.35$] $H_1: p < 0.35$	B1	[Wrong or no symbol, B1, but r or x or \overline{x} : B0]
		B(14, 0.35)	M1	Correct distribution stated or implied, can be implied by
	α:	$P(\le 2) = 0.0839 > 0.025$	1411	N(4.9,), but <i>not</i> Po(4.9)
	α. β:	$CR \le 1$, probability 0.0205	A1	$0.0839 \text{ seen}, or P(\le 1) = 0.0205 \text{ if clearly using CR}$
	ρ.	Do not reject H_0 . Insufficient	B1	Compare binomial tail with 0.025, $or R = 2$ binomial CR
		evidence that proportion that can	M1	Do not reject H_0 , $$ on their probability, <i>not</i> from N or Po
		receive Channel C is less than 35%	A1√ 7	or P($<$ 2); Contextualised conclusion $\sqrt{}$
	(ii)	B(8, 0.35): $P(0) = 0.0319$	M1	Attempt to find P(0) from B(n , 0.35)
	(11)	B(9, 0.35): P(0) = 0.0207	A1	One correct probability $[P(\le 2) = .0236, n = 18: M1A1]$
		B(3, 0.33). $I(0) = 0.0207$	A1	Both probabilities correct
		Hence largest value of <i>n</i> is 8	A1 4	Answer 8 or \leq 8 only, needs minimum M1A1
	or	$0.65^n > 0.025$; $n \ln 0.65 > \ln 0.025$	M1M1	$p^n > 0.025$, any relevant p; take ln, or T&I to get 1 SF
		8.56; largest value of $n = 8$	A1A1	In range [8.5, 8.6]; answer 8 or \leq 8 only
8	(i) α:		M1	Standardise 100.7 with $\sqrt{80}$ or 80
	(1) α.	$\frac{100.7 - 102}{5.6 / \sqrt{80}} = -2.076$	A1	a.r.t. -2.08 obtained, must be $-$, <i>not</i> from $\mu = 100.7$
		Compare with –2.576	B1 3	-2.576 or -2.58 seen and compare z, allow both +
	or β:	$\Phi(-2.076) = 0.0189$	M1	Standardise 100.7 with $\sqrt{80}$ or 80
	о, р.	[or $\Phi(2.076) = 0.981$]	A1	a.r.t. 0.019, allow 0.981 only if compared with 0.995
		and compare with 0.005 [or 0.995]	B1 (3)	Compare correct tail with 0.005 or 0.995
	or w		M1	This formula, allow +, 80, wrong SD, any k from Φ^{-1}
	or γ:	$102 - \frac{k \times 5.6}{\sqrt{80}}$		ins romain, and with each wrong 82, and which is
		k = 2.576, compare 100.7	B1	k = 2.576/2.58, – sign, and compare 100.7 with CV
		100.39	A1 (3)	CV a.r.t. 100.4
		Do not reject H ₀	M1	Reject/Do not reject, $\sqrt{\ }$, needs normal, 80 or $\sqrt{80}$, Φ^{-1} or
		Insufficient evidence that quantity		equivalent, correct comparison, <i>not</i> if clearly $\mu = 100.7$
		of SiO ₂ is less than 102	A1 2	Correct contextualised conclusion
	(ii) (a)		M1	One equation for c and n , equated to Φ^{-1} , allow cc,
	(11) (a)	$\frac{c - 102}{5.6 / \sqrt{n}} = -2.326$	B1	wrong sign, σ^2 ; 2.326 or 2.33
		$102 - c = \frac{13.0256}{4}$	A1 3	Correctly obtain given equation, needs in principle to
		$102 - c = \frac{13.0256}{\sqrt{n}} \qquad \mathbf{AG}$		have started from $c - 102$, -2.326
	(b)	c-100 1.645 100 9.212	M1	Second equation, as before
	(0)	$\frac{c-100}{5.6/\sqrt{n}} = 1.645$ or $c-100 = \frac{9.212}{\sqrt{n}}$	A1 2	Completely correct, aef
		v		
	(c)	Solve simultaneous equations	M1	Correct method for simultaneous equations, find c or \sqrt{n}
		$\sqrt{n} = 11.12$	A1	\sqrt{n} correct to 3 SF
		$n_{min} = 124$	A1	$n_{min} = 124$ only
		c = 100.83	A1 4	Critical value correct, 100.8 or better