Mark Scheme 4732 January 2007

Note: "3 sfs" means an answer which is equal to, or rounds to, the given answer. If such an answer is seen and then later rounded, apply ISW. Penalize over-rounding only once in paper, except qu 8(ii).

Penalize ove	r-rounding only once in paper, except qu 8(ii).			
1i	r-rounding only once in paper, except qu 8(ii). $ \frac{1 - {3 \choose 10} + {1 \choose 5} + {2 \choose 5}}{{1 \choose 10}} $	M1 A1	2	or $(^3/_{10} + ^1/_5 + ^2/_5) + p = 1$
ii	$\frac{\frac{10}{3}}{\frac{10}{10} + 2 \times \frac{1}{5} + 3 \times \frac{2}{5}}$ $\frac{\frac{19}{10}}{\frac{19}{10}}$ oe	M1 A1	2	÷4or6⇒ M0A0
Total		4		
2i	$x = 20; y = 11; x^2 = 96; y^2 = 31; xy$			
21	=52) $S_{xx} = 16$ or 3.2	B1 B1		
	$S_{yy} = 6.8$ or 1.36	B1		
	$S_{xy} = 8 \qquad \text{or } 1.6$	M1		$dep -1 \le r \le 1$
	r = 8 or 1.6	1,11		ft their S's $(S_{xx} \& S_{yy} + ve)$ for M1 only
	$\sqrt{(16x6.8)}$ $\sqrt{(3.2x1.36)}$ = 0.767 (3 sfs)	A1	5	it then s is (S _{XX} et syy) + (s) for 1.11 sing
ii	Small sample oe	B1f	1	
Total		6		
3i	120	B1	1	not just 5!
iia	$3 \times 4! \text{ or } 72 (\div 5!)$	M1		not just 3.
11a	$\frac{3 \times 4!}{3 \cdot 5}$ oe $(-5!)$	A1	2	oe, eg ⁷² / ₁₂₀
b	Starts 1 or 21 (both)	M1		$12,13,14,15$, (≥ 2 of these incl 21, or allow 1 extra)
D	$\frac{1}{5} + \frac{1}{5} \times \frac{1}{4}$			can be implied by wking
		M1	3	or $5x 3!$ or $4! + 3!$ (÷5!)
7D 4 1	$= \frac{1}{4}$ oe	A1	3	complement: full equiv steps for Ms
Total		6		
4ia	W & Y oe	B1	1	
b		B1	1	
	X oe			
ii	Geo probs always decrease	B1	1	Geo not fixed no. of values
	or Geo has no upper limit to x or $x \neq 0$			diags have fixed no of trials not Geo has +ve skew
iii		B1		indep
	$ \mathbf{w} $	B1dep)	allow Bin probs rise then fall
		2		
	Bin probs cannot fall then rise			
To401	or bimodal	<u></u>		
Total 5:	140×106 9	5		
5i	$2685 - \frac{140 \times 106.8}{8}$ or $2685 - \frac{140 \times 106.8}{8}$	M		Compatable in any assess famous a famous
	$\frac{8}{3500 - \frac{140^2}{8}} = \frac{012083 - \frac{140^2}{8}}{8 \times 17.5 \times 13.35}$	M1		Correct sub in any correct formula for b (incl. $(x - \bar{x})$ etc)
	$= {}^{136}/_{175} \text{ or } 0.777 (3 \text{ sfs})$	A1		
	$y - \frac{106.8}{8} = 0.777(x - \frac{140}{8})$	M1		or $a = {}^{106.8}/_8 - 0.777 x^{140}/_8$ ft b for M1
	$y=0.78x-0.25$ or better or $y = {}^{136}/{}_{175}x - {}^{1}/{}_{4}$	A1	4	≥ 2 sfs sufficient for coeffs
ii	$0.78 \times 12 - 0.25$	M1		M1: ft their equn
	= 9.1 (2 sfs)	A1f	2	A1: dep const term in equn
iiia	Reliable	B1		Just "reliable" for both: B1
b	Unreliable because extrapolating oe	B1	2	
Total		8		
1 Utal	<u> </u>	0		

6i	$Geo(^2/_3)$ stated	M1		or implied by $\binom{1}{3}^n x^2/_3$
	$(^{1}/_{3})^{3} \times ^{2}/_{3}$	M1		
	$= \frac{2}{81}$ or 0.0247 (3 sfs)	A 1	3	

ii	$(1/3)^3$	M1		or $^{2}/_{3}+^{1}/_{3}x^{2}/_{3}+(^{1}/_{3})^{2}x^{2}/_{3}:M2$
	$(1 - (1/3)^3)^3$	M1		one term omitted or extra or wrong: M1
	2 (73)	1,11		$1 - {\binom{1}{3}}^4$ or $1 - {\binom{2}{3}}^{+1}/{3}x^2/{3} + {\binom{1}{3}}^2x^2/{3}$):M1
	²⁶ / ₂₇ or 0.963 (3 sfs)	A1	3	- (+3) (+3++3+3+(+3)+3)
iii	1 / 2/3	M1		
	= 3/2 oe	A1	2	
Total		8		
7i	$^{2}/_{9}$ or $^{7}/_{9}$ oe seen	B1		
	$\frac{3}{9}$ or $\frac{6}{9}$ oe seen	B1		
	$^{1}/_{8}$ or $^{7}/_{8}$ oe seen	B1		
	Correct structure	B1		ie 8 correct branches only,
	A 11	D.1	_	ignore probs & values
	All correct	B1	5	including probs and values,
	3, 7, 7, 3, 7, 6,	7.70		but headings not req'd
ii	$\sqrt{3/_{10} x^{7/_9} + 7/_{10} x^{3/_9} + 7/_{10} x^{6/_9}}$	M2		or $^{3}/_{10}x^{7}/_{9} + ^{7}/_{10}$ or $1 - ^{3}/_{10}x^{2}/_{9}$
	14/ 00 0 0 22 00	A 1	3	M1: one correct prod or any prod $+ \frac{1}{10}$
iii	$\frac{14}{15}$ or 0.933 oe $\frac{3}{10}$ x $\frac{2}{9}$ x $\frac{7}{8}$ + $\frac{7}{10}$ x $\frac{6}{9}$	A1 M2	3	$\int \int $
111	/ ₁₀ X / ₉ X / ₈ + / ₁₀ X / ₉	IVIZ		M1: one correct prod
	$^{21}/_{40}$ or 0.525 oe	A1	3	cao
	No ft from diag except: with replacement:			re: B1 (ii) $^{91}/_{100}$: B2 (iii) 0.553: B2
Total	100 it from diag except. With replacement.	11		(II) / ₁₀₀ . B 2 (III) 0.333. B 2
8i	Med = 2	B1	-	cao
01	LQ = 1 or $UQ = 4$	M1		or if treat as cont data:
				read cf curve or interp at 25 & 75
	IQR = 3	A1	3	cao
ii	Assume last value = 7 (or eg 7.5 or 8 or 8.5)	B1		stated, & not contradicted in wking
				eg 7-9 or 7,8, 9 Not just in wking
	xf attempted ≥ 5 terms	M1		allow "midpts" in xf or x^2f
	2.6 or 3 sf ans that rounds to 2.6	A1		
	$x^2 f$ or $(x-m)^2 f \ge 5$ terms	M1		
	$\sqrt{(x^2f/100-m^2)}$ or			
	$\sqrt{(x-m)^2f}/100$ fully correct but ft m	M1		1 M2
	1.6 or 1.7 or 3 sf ans that rounds to 1.6 or 1.7	A1		dep M3
		 	6	penalize > 3 sfs only once
iii	Median less affected by extremes or	B1	1	or median is an integer or mean not int.
	outliers etc (NOT anomalies)			or not affected by open-ended interval
	Small change in var'n leads to lge change in IQR			general comment acceptable
iv	UQ for W only just 4, hence IQR exaggerated			for Old Moat LQ only just 1 & UQ only just 3
	orig data shows variations are similar	B1	1	
v				
•			2	
Total		(
v Total	orig data shows variations are similar OM % (or y) decr (as x incr) oe Old Moat	B1 B1 B1 13	2	oe specific comment essential ranks reversed in OM or not rev in W NIS

9i	$^{11}\text{C}_5 \times (^{1}/_{4})^{6} \times (^{3}/_{4})^{5}$	M1		or $462 \times (^{1}/_{4})^{6} \times (^{3}/_{4})^{5}$	
1	0.0268 (3 sfs)	A1	2		
ii	$q^{11} = 0.05$ or $(1-p)^{11} = 0.05$	M1		(any letter except p) ¹¹ = 0.05 oe	
	$\sqrt[11]{0.05}$	M1		oe or inv $\log(\frac{\log 0.05}{11})$	
	q = 0.762 or 0.7616	A1		11	
	p = 0.238 (3 sfs)	A1f	4	ft dep M2	
iii	$11 \times p \times (1-p) = 1.76$ oe	M1		not $11pq = 1.76$	
	$11p - 11p^2 = 1.76$ or $p - p^2 = 0.16$	A 1		any correct equn after mult out	
	$11p^2 - 11p + 1.76 = 0$ or $p^2 - p + 0.16 = 0$	A1		or equiv with $= 0$	
	$(25p^2 - 25p + 4 = 0)$				
	(5p-1)(5p-4) = 0			or correct fact'n or subst'n for their quad	
	or $p = 11 - \sqrt{(11^2 - 4x11x1.76)}$	M1		equ'n eg $p = \frac{1 \pm \sqrt{(1-4x0.16)}}{}$	
	2 x 11			2	
	p = 0.2 or 0.8	A1	5		
Total		11			
Total 72 marks					