4762 Mechanics 2

Q 1		mark	comment	sub
(a) (i)	In i direction: $6u - 12 = 18$ so $u = 5$ i.e. 5i m s ⁻¹	M1 E1	Use of I-M Accept $6u - 12 = 18$ as total working. Accept 5 instead of 5i.	
	entrier In i direction: $0.5v + 12 = 0.5 \times 11$ v = -13 so -13 i m s ⁻¹ or	M1 B1 A1	Use of I-M Use of + 12 i or equivalent Accept direction indicated by any means	
	$6 \times 5 + 0.5 v = 6 \times 3 + 0.5 \times 11$ v = -13 so $-13i \text{ m s}^{-1}$	M1 A1 A1	PCLM Allow only sign errors Accept direction indicated by any means	5
(ii)	Using NEL: $\frac{11-3}{-13-5} = -e$	M1	Use of NEL. Condone sign errors but not reciprocal expression	
	$e = \frac{4}{9} (0.\dot{4})$	F1 F1	FT only their -13 (even if +ve) FT only their -13 and only if -ve (allow 1 s.f. accuracy)	3
(iii)	In i direction: $-2 \times 7 = 0.5v - 0.5 \times 11$ v = -17 so -17 i m s ⁻¹	M1 M1 A1 A1	Use of $I = Ft$ Use of $I = m(v - u)$ For ± 17 cao. Direction (indicated by any means)	
	or -2i = 0.5 a so $a = -4i m s^{-2}$ $v = 11i - 4i \times 7$ $v = -17$ so $-17 i m s^{-1}$	M1 A1 M1 A1	Use of $\mathbf{F} = m\mathbf{a}$ For ± 4 Use of uvas <i>t</i> cao. Direction (indicated by any means)	4
(b)	$u \mathbf{i} + ev \mathbf{j}$ $\tan \alpha = \frac{v}{u}, \ \tan \beta = \frac{ev}{u}$	B1 B1 M1	For <i>u</i> For <i>ev</i> Use of tan. Accept reciprocal argument. Accept use of their components	
	$\tan \beta = e\left(\frac{v}{u}\right) = e \tan \alpha$	B1 E1	Both correct. Ignore signs. Shown. Accept signs not clearly dealt with.	5
		17		

Mark Scheme

Q 2		mark	comment	sub
(i)	$(2+3\times6)\left(\frac{\overline{x}}{\overline{y}}\right) = 6\binom{3}{0} + 6\binom{6}{3} + 6\binom{3}{6} + 2\binom{0}{7}$ $20\left(\frac{\overline{x}}{\overline{y}}\right) = \binom{18+36+18}{18+36+14} = \binom{72}{68}$ $\overline{x} = 3.6$ $\overline{y} = 3.4$	M1 B1 B1 E1 A1	Method for c.m. Total mass correct For any of the 1 st 3 RHS terms For the 4 th RHS term cao [If separate cpts, award the 2 nd B1 for 2 <i>x</i> - terms correct and 3 rd B1 for 2×7 in <i>y</i> term]	6
(ii)	$arctan\left(\frac{3.6}{2+(6-3.4)}\right) = arctan\left(\frac{3.6}{4.6}\right)$ so 38.047 so 38.0° (3 s. f.)	B1 B1 M1 B1 A1	Diagram showing G vertically below D 3.6 and their 3.4 correctly placed (may be implied) Use of arctan on their lengths. Allow reciprocal of argument. Some attempt to calculate correct lengths needed 2 + (6 - their 3.4) seen cao	5
(iii)	moments about D $5 \times 3.6 = 6 \times T_{BP}$ so tension in BP is 3 N Resolve vert: $3 + T_{DQ} = 5$ so tension in DQ is 2 N	M1 F1 M1 F1	moments about D. No extra forces FT their values if calc 2nd Resolve vertically or moments about B. FT their values if calc 2nd	4
(iv)	We require <i>x</i> -cpt of c.m. to be zero either $(20+L)\overline{x} = 20 \times 3.6 - \frac{1}{2}L^2$ or $2 \times 6 \times (0.5 \times 6) + 6 \times 6 - 0.5 \times L^2 = 0$ L = 12	M1 B1 A1 A1	A method to achieve this with all cpts For the $0.5 \times L^2$ All correct	4
		19		

48

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Q 3		mark	comment	sub
(ii)M1 A 1Equilibrium equation at a pin-joint attempted 1^{s1} ans. Accept + orA 1 TAD sin 30 - L = 0 so $T_{AD} = 2L$ so $2L$ N (T) A $\rightarrow T_{AB} + T_{AD} \cos 30 = 0$ so $T_{AB} = -\sqrt{3L}$ so $\sqrt{3L}$ N (C) B 1 $T_{BD} \sin 60 - 3L = 0$ so $T_{AB} = 2\sqrt{3L}$ so $\sqrt{3L}$ N (T) B $\rightarrow T_{BC} + T_{BD} \cos 60 - T_{AB} = 0$ so $T_{BC} = -2\sqrt{3L}$ so $2\sqrt{3L}$ N (C)M1 All Third equation attempted 1^{s1} ans. FT any previous answer(s) used.(b)Leg QR with frictional force $F \leftarrow$ moments c.w. about R $U \times 2l \sin 60 - Wl \cos 60 = 0$ M1 All T and the previous and the pr	(a) (i)	$\begin{array}{c} & & & \\ & & & \\ A \\ & & & \\ & & \\ & & \\ & & \\ & & \\ L \\ N \\ & & \\$	B1 B1	Internal forces all present and labelled All forces correct with labels and arrows (Allow the internal forces set as tensions, thrusts or a mixture)	2
(b)Leg QR with frictional force $F \leftarrow$ moments c.w. about R $U \times 2l \sin 60 - Wl \cos 60 = 0$ Accept only 1 leg considered (and without comment)M1Suitable moments equation. Allow 1 force omitted a.c. momentsHoriz equilibrium for QR $F = U$ M1Asecond correct equation for horizontal or vertical equilibrium to eliminate a force (U or reaction at foot) [Award if correct moments equation containing only W and F]Hence $\frac{1}{2}W = \sqrt{3}F$ and so $F = \frac{\sqrt{3}}{6}W$ E1* This second equation explicitly derived Correct use of 2^{nd} equation with the moments equationF1Shown. CWO but do not penalise * again.	(ii)	A \uparrow $T_{AD} \sin 30 - L = 0$ so $T_{AD} = 2L \text{ so } 2L \text{ N}$ (T) A \rightarrow $T_{AB} + T_{AD} \cos 30 = 0$ so $T_{AB} = -\sqrt{3}L$ so $\sqrt{3}L \text{ N}$ (C) B \uparrow $T_{BD} \sin 60 - 3L = 0$ so $T_{BD} = 2\sqrt{3}L$ so $2\sqrt{3}L \text{ N}$ (T) B \rightarrow $T_{BC} + T_{BD} \cos 60 - T_{AB} = 0$ so $T_{BC} = -2\sqrt{3}L$ so $2\sqrt{3}L \text{ N}$ (C)	M1 A1 F1 M1 A1 M1 F1 E1	Equilibrium equation at a pin-joint attempted 1 st ans. Accept + or –. Second equation attempted 2 nd ans. FT any previous answer(s) used. Third equation attempted 3 rd ans. FT any previous answer(s) used. Fourth equation attempted 4 th ans. FT any previous answer(s) used. All T/C consistent [SC 1 all T/C correct WWW]	9
	(b)	Leg QR with frictional force $F \leftarrow$ moments c.w. about R $U \times 2l \sin 60 - Wl \cos 60 = 0$ Horiz equilibrium for QR F = U Hence $\frac{1}{2}W = \sqrt{3}F$ and so $F = \frac{\sqrt{3}}{6}W$	M1 A1 M1 E1 M1 E1	Accept only 1 leg considered (and without comment) Suitable moments equation. Allow 1 force omitted a.c. moments c.w. moments A second correct equation for horizontal or vertical equilibrium to eliminate a force (U or reaction at foot) [Award if correct moments equation containing only <i>W</i> and <i>F</i>] * This second equation explicitly derived Correct use of 2 nd equation with the moments equation Shown. CWO but do not penalise * again.	7

49

4762

Mark Scheme

Q 4		mark	comment	sub
(a) (i)	Tension is perp to the motion of the sphere (so WD, $Fd \cos \theta = 0$)	E1		1
(ii)	Distance dropped is $2-2\cos 40 = 0.467911$ GPE is <i>mgh</i> so $0.15 \times 9.8 \times 0.467911 = 0.687829 J$	M1 E1 M1 B1	Attempt at distance with resolution used. Accept $sin \leftrightarrow cos$ Accept seeing 2-2cos40 Any reasonable accuracy	4
(iii)	$0.5 \times 0.15 \times v^2 = 0.687829$ so $v = 3.02837$ so 3.03 m s ⁻¹ (3 s. f.)	M1 F1	Using KE + GPE constant FT their GPE	2
(iv)	$\frac{1}{2} \times 0.15 (v^2 - 2.5^2)$	M1	Use of W-E equation (allow 1 KE term or GPE term omitted)	
		B1	KE terms correct	
	$= 0.687829 0.6 \times \frac{40}{260} \times 2\pi \times 2$	M1	WD against friction	
	v = 2.06178 so 2.06 m s ⁻¹ (3 s. f.)	A1 A1	WD against friction correct (allow sign error) cao	5
(b)	N2L down slope: $3g\sin 30 - F = 3 \times \frac{1}{8}g$	M1 A1	Must have attempt at weight component Allow sign errors.	
	so $F = \frac{9g}{2}$ (= 11.025)	A1		
	$R = 3g \times \frac{\sqrt{3}}{2}$ (= 25.4611)	B1		
	$\mu = \frac{F}{R} = \frac{\sqrt{3}}{4}$ (= 0.43301)	M1	Use of $F = \mu R$	
	к 4	E1	Must be worked precisely	6
		18		

50