4762 Mechanics 2

Q 1		mark	comment	sub
(a) (i)	In i direction: $6 u-12=18$ so $u=5$ i.e. $5 \mathbf{i ~ m ~ s}$ either In i direction: $\quad 0.5 v+12=0.5 \times 11$ $v=-13 \mathrm{so}-13 \mathrm{i} \mathrm{~m} \mathrm{~s}^{-1}$ or $\begin{aligned} & 6 \times 5+0.5 v=6 \times 3+0.5 \times 11 \\ & v=-13 \\ & \text { so }-13 \mathrm{i} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	M1 E1 M1 B1 A1 M1 A1 A1	Use of I-M Accept $6 u-12=18$ as total working. Accept 5 instead of $5 \mathbf{i}$. Use of I-M Use of $+12 \mathbf{i}$ or equivalent Accept direction indicated by any means PCLM Allow only sign errors Accept direction indicated by any means	5
(ii)	Using NEL: $\frac{11-3}{-13-5}=-e$ $e=4 / 9(0 . \dot{4})$	M1 F1 F1	Use of NEL. Condone sign errors but not reciprocal expression FT only their -13 (even if +ve) FT only their -13 and only if -ve (allow 1 s.f. accuracy)	3
(iii)	In i direction: $-2 \times 7=0.5 v-0.5 \times 11$ $v=-17 \mathrm{so}-17 \mathrm{im} \mathrm{~s}^{-1}$ or $\begin{aligned} & -2 \mathbf{i}=0.5 \mathrm{a} \\ & \text { so } a=-4 \mathbf{i ~ m ~ s} \\ & v=11 \mathbf{i}-4 \mathbf{i} \times 7 \\ & v=-17 \text { so }-17 \mathbf{i m ~ s}^{-1} \end{aligned}$	M1 M1 A1 A1 M1 A1 M1 A1	Use of I = Ft Use of $\mathbf{I}=m(\mathbf{v}-\mathbf{u})$ For ± 17 cao. Direction (indicated by any means) Use of $\mathbf{F}=m \mathbf{a}$ For ± 4 Use of uvast cao. Direction (indicated by any means)	4
(b)	$u \mathbf{i}+e v \mathbf{j}$ $\tan \alpha=\frac{v}{u}, \tan \beta=\frac{e v}{u}$ $\tan \beta=e\left(\frac{v}{u}\right)=e \tan \alpha$	B1 B1 M1 B1 E1	For u For ev Use of tan. Accept reciprocal argument. Accept use of their components Both correct. Ignore signs. Shown. Accept signs not clearly dealt with.	5
		17		

Q 2		mark	comment	sub
(i)	$\begin{aligned} & (2+3 \times 6)\binom{\bar{x}}{\bar{y}}=6\binom{3}{0}+6\binom{6}{3}+6\binom{3}{6}+2\binom{0}{7} \\ & 20\binom{\bar{x}}{\bar{y}}=\binom{18+36+18}{18+36+14}=\binom{72}{68} \\ & \bar{x}=3.6 \\ & \bar{y}=3.4 \end{aligned}$	M1 B1 B1 B1 E1 A1	Method for c.m. Total mass correct For any of the $1^{\text {st }} 3$ RHS terms For the $4^{\text {th }}$ RHS term cao [If separate cpts, award the $2^{\text {nd }}$ B1 for $2 x$ - terms correct and $3^{\text {rd }} \mathrm{B} 1$ for 2×7 in y term]	6
(ii)	$\arctan \left(\frac{3.6}{2+(6-3.4)}\right)=\arctan \left(\frac{3.6}{4.6}\right)$ $\text { so } 38.047 \ldots \text { so } 38.0^{\circ} \text { (3 s. f.) }$	B1 B1 M1 B1 A1	Diagram showing G vertically below D 3.6 and their 3.4 correctly placed (may be implied) Use of arctan on their lengths. Allow reciprocal of argument. Some attempt to calculate correct lengths needed $2+(6-\text { their } 3.4) \text { seen }$ cao	
(iii)	moments about D $5 \times 3.6=6 \times T_{\mathrm{BP}}$ so tension in BP is 3 N Resolve vert: $3+T_{\mathrm{DQ}}=5$ so tension in $D Q$ is 2 N	M1 F1 M1 F1	moments about D . No extra forces FT their values if calc 2nd Resolve vertically or moments about B. FT their values if calc 2nd	4
(iv)	We require x-cpt of c.m. to be zero either $(20+L) \bar{X}=20 \times 3.6-\frac{1}{2} L^{2}$ or $2 \times 6 \times(0.5 \times 6)+6 \times 6-0.5 \times L^{2}=0$ $L=12$	M1 B1 A1 A1	A method to achieve this with all cpts For the $0.5 \times L^{2}$ All correct	4
		19		

Q 3		mark	comment	sub
(a) (i)		$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Internal forces all present and labelled All forces correct with labels and arrows (Allow the internal forces set as tensions, thrusts or a mixture)	2
(ii)	A \uparrow $T_{A D} \sin 30-L=0$ so $T_{A D}=2 L$ so $2 L \mathrm{~N}$ (T) $\begin{aligned} & \mathrm{A} \rightarrow T_{\mathrm{AB}}+T_{\mathrm{AD}} \cos 30=0 \\ & \text { so } T_{\mathrm{AB}}=-\sqrt{3} L \text { so } \sqrt{3} L \mathrm{~N}(\mathrm{C}) \\ & \mathrm{B} \uparrow T_{\mathrm{BD}} \sin 60-3 L=0 \\ & \text { so } T_{\mathrm{BD}}=2 \sqrt{3} L \text { so } 2 \sqrt{3} L \mathrm{~N}(\mathrm{~T}) \\ & \mathrm{B} \rightarrow \\ & T_{\mathrm{BC}}+T_{\mathrm{BD}} \cos 60-T_{\mathrm{AB}}=0 \\ & \text { so } T_{\mathrm{BC}}=-2 \sqrt{3} L \text { so } 2 \sqrt{3} L \mathrm{~N}(\mathrm{C}) \end{aligned}$	M1 A1 M1 F1 M1 A1 M1 F1 E1	Equilibrium equation at a pin-joint attempted $1^{\text {st }}$ ans. Accept + or - . Second equation attempted $2^{\text {nd }}$ ans. FT any previous answer(s) used. Third equation attempted $3^{\text {rd }}$ ans. FT any previous answer(s) used. Fourth equation attempted $4^{\text {th }}$ ans. FT any previous answer(s) used. All T/C consistent [SC 1 all T/C correct WWW]	9
(b)	Leg QR with frictional force $F \leftarrow$ moments c.w. about R $U \times 2 l \sin 60-W l \cos 60=0$ Horiz equilibrium for QR $F=U$ Hence $\frac{1}{2} W=\sqrt{3} F$ and so $F=\frac{\sqrt{3}}{6} W$	M1 A1 A1 M1 E1 M1 E1	Accept only 1 leg considered (and without comment) Suitable moments equation. Allow 1 force omitted a.c. moments c.w. moments A second correct equation for horizontal or vertical equilibrium to eliminate a force (U or reaction at foot) [Award if correct moments equation containing only W and F] * This second equation explicitly derived Correct use of $2^{\text {nd }}$ equation with the moments equation Shown. CWO but do not penalise * again.	7
		18		

Q 4		mark	comment	sub
$\begin{aligned} & \hline \text { (a) } \\ & \text { (i) } \end{aligned}$	Tension is perp to the motion of the sphere (so WD, Fd $\cos \theta=0$)	E1		1
(ii)	Distance dropped is $2-2 \cos 40=$ 0.467911.. GPE is $m g h$ so $0.15 \times 9.8 \times 0.467911 \ldots=0.687829 \ldots \mathrm{~J}$	$\begin{aligned} & \text { M1 } \\ & \text { E1 } \\ & \text { M1 } \\ & \text { B1 } \end{aligned}$	Attempt at distance with resolution used. Accept $\sin \leftrightarrow \cos$ Accept seeing $2-2 \cos 40$ Any reasonable accuracy	4
(iii)	$\begin{aligned} & 0.5 \times 0.15 \times v^{2}=0.687829 \ldots \\ & \text { so } v=3.02837 \ldots \text { so } 3.03 \mathrm{~m} \mathrm{~s}^{-1}(3 \mathrm{~s} . \mathrm{f} .) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { F1 } \end{aligned}$	Using KE + GPE constant FT their GPE	2
(iv)	$\begin{aligned} & \frac{1}{2} \times 0.15\left(v^{2}-2.5^{2}\right) \\ & =0.687829 \ldots-0.6 \times \frac{40}{360} \times 2 \pi \times 2 \\ & v=2.06178 \ldots \text { so } 2.06 \mathrm{~m} \mathrm{~s}^{-1}(3 \text { s. f. }) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Use of W-E equation (allow 1 KE term or GPE term omitted) KE terms correct WD against friction WD against friction correct (allow sign error) cao	5
(b)	N2L down slope: $3 g \sin 30-F=3 \times \frac{1}{8} g$ $\begin{aligned} & \text { so } F=\frac{9 g}{8}(=11.025) \\ & R=3 g \times \frac{\sqrt{3}}{2}(=25.4611 \ldots) \\ & \mu=\frac{F}{R}=\frac{\sqrt{3}}{4}(=0.43301 \ldots) \end{aligned}$	M1 A1 A1 B1 M1 E1	Must have attempt at weight component Allow sign errors. Use of $F=\mu R$ Must be worked precisely	6
		18		

