

AS Mathematics

MS1B Statistics 1B Final Mark Scheme

6360 June 2017

Version/Stage: v1.0

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright © 2017 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
Е	mark is for explanation
√or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

General Notes for MS1B

- GN1 There is no allowance for misreads (MR) or miscopies (MC) unless specifically stated in a question.
- **GN2** In general, a correct answer (to accuracy required) without working scores full marks but an incorrect answer (or an answer not to required accuracy) scores no marks.
- GN3 In general, a correct answer (to accuracy required) without units scores full marks.
- **GN4** When applying AWFW, a slightly inaccurate numerical answer that is subsequently rounded to fall within the accepted range cannot be awarded full marks.
- **GN5** Where percentage equivalent answers are permitted in a question, then penalise by **one accuracy mark** at the first **correct** answer but only if no indication of percentage (eg %) is shown.
- **GN6** In questions involving probabilities, do **not** award **accuracy** marks for answers given in the form of a ratio or odds such as 13/47 given as 13:47 or 13:34.
- **GN7** Accept decimal answers, providing that they have **at least two** leading zeros, in the form $c \times 10^{-n}$ (eg 0.00321 as 3.21×10^{-3}).
- GN8 Where a candidate's response to a part of a question is simply to label the part (eg (d)(i)) with nothing else (ie no attempt at a solution), then this is still treated as a response and marked as 0 rather than NR. Also, deleted work, if not replaced, should be marked and not treated as NR.

Specific Notes for MS1B

1. Question 1 In part(a), the equation is NOT required but, if simply quoted, can score marks.

2. Question 2

In part (b), for example, "LCL < 25 < UCL so agree (with claim)" scores 2 marks.

3. Question 3

In parts (b) & (c), note the ranges if using Bdep1, Bdep1 and Mdep1.

4. Question 4

In part (c), equivalent contextual explanations to "positive" and "negative" are NOT acceptable.

5. Question 5

In part (b)(i), be aware of Note 3 in part (b)(i) when then marking part (b)(ii)(B).

6. Question 6

In part (b)(i), the Special Cases are by no means rare events!

7. Question 7

In part (a)(iii), note the stricter conditions for the awarding of the method marks. In part(b)(ii), there is NO follow-through from part(b)(i).

Q	Solution	Marks	Total	Comments	
1 (a)	$b \text{ (gradient/slope)} = \frac{44725}{89375}$	M1		Can be implied by a correct answer for <i>b</i>	
	b (gradient/slope) = <u>0.5(00) to 0.501</u>	A1		AWFW (0.50042)	
	a (intercept) = 83 - $b \times 162.5$				
	a (intercept) = 1.58 to 1.78	A1	3	AWFW (1.68182)	
Note	1 For fractional answers only accept <i>b</i> (gradient/slope) = $\frac{1}{3}$	$\frac{789}{575}$ or $\frac{1}{2}$ f	or A1 and	<i>a</i> (intercept) = $\frac{37}{22}$ or $1\frac{15}{22}$ or $\frac{7}{4}$ or $1\frac{3}{4}$ for A1	
(b) (i)	y(175) = 89 to 90	B1		AWFW (89.25524)	
Note	1 If <i>a</i> and <i>b</i> are interchanged, then $y(175) = 277$ to 307 2 Do NOT accept fractional answers here	\Rightarrow B0	L	L	
(ii)	4 m > 3 m or 400 cm > 300 cm or 4 m > 300 cm or 400 cm > 3 m	B1		Correct comparison quoting units	
	 or (a) 4 m or 400 cm is (b) above/out(side)/extrapolation of the (c) <i>x</i>-heights/<i>x</i>-values/<i>x</i>-data (set)/<i>x</i>-range/ observed <i>x</i>-values/ [25 (cm) to 300 cm (OE)] range or interval 	(B1)		Must include one (OE) from each of the three lists (a), (b) & (c) and quoting units Allow "drop(ped)" instead of "x"	
Notes	 For example, "4 > 3" or "4 > 300 cm" ⇒ B0 For example, "4 m is above observed x-values" ⇒ B1 Answers using (a), (b) & (c) must give a clear comparison between 4 m (OE) and observed x-values (OE) For example, "4 is outside x-heights" or "400 cm is outside the heights" ⇒ B0 At 4 m / >300 cm, air resistance or forces may have effect/change/invalidate equation ⇒ B1 				
			2		
		Total	5		

Q	Solution	Marks	Total	Comments		
$\frac{\mathbf{Q}}{2}$		11101150	I Juli			
(a)	Sample is random	B1		Must include both emboldened words		
	Durations are normal (ly distributed)	B1		Must include both emboldened words		
Notes	 "Sample (data/values/durations/(telephone) calls) is random and is normally distributed" ⇒ B1 B0 "Durations (of (telephone) calls) are random and normally distributed" ⇒ B0 B1 "Length of calls are independent and normal(ly distributed)" ⇒ B0 B1 					
	$95\% (0.95) \implies z = \mathbf{\underline{1.96}}$	B1		AWRT (1.95996)		
	Mean / $\bar{x} = 21.5$	B1		CAO (Ignore notation)		
	CI for μ is: (20.5 to 22.5 AWFW) $\pm \begin{pmatrix} 1.96 \text{ AWRT} \\ \text{or} \\ 1.64 \text{ to } 1.65 \text{ AWFW} \end{pmatrix} \times \frac{7.5}{\sqrt{10}}$	M2,1 (-1 ee)		M0 if CI is not an interval or is not of the form $\overline{x} \pm z \times \frac{7.5}{\sqrt{10}}$		
	Hence $21.5 \pm (4.6 \text{ to } 4.7)$			CAO/AWFW (21.5 ± 4.64855)		
	or	Adep1		Dependent on award of M2		
	(16.8 to 16.9, 26.1 to 26.2)		7	AWFW (16.85, 26.15)		
Notes	1 If award of M0 is followed by a numerically correct CI = 2 Use of z-value of 1.28 to 1.29 or 2.05 to 2.06, 2.32 to 2.3. 3 Use of $s^2(n-1) = 96.11$, $s(n-1) = 9.98$, $s^2(n) = 89.65$ or $s(n-1) = 89.65$ or $s(n-1)$	3 or 2.57 to	$2.58 \Rightarrow 1$	error but any other z/t values \Rightarrow M0		
(b)						
	Clear correct comparison of 25 with CI in (a) (eg 25 is within CI or interval)	BF1		Statement must include reference to 25 F on CI providing it includes 25 Must have found an interval in (a) but quoting values for CI or CLs is not required Ignore additional statements such as those in Notes 3 & 4 below		
	Agree with or accept claim or Claim is (likely to be) true/correct/right/valid/accurate/supported/ reasonable/possible	Bdep1		OE; dependent on BF1 Do NOT ignore conflicting conclusions such as that in Note 5 below		
Notes	 Statement must clearly indicate that "25 is within the in Statements of the form "25 is below the UCL" or "25 Statements of the form "It/this/mean/value/duration/minute Statements of the form "25 is within 95% of the data/val Statements of the form "25 is within the interval but it is the interval but	is above the es/(telephon ues/duratior	e)calls/etc ns/minutes/(is within the interval" \Rightarrow BF0 telephone)calls/etc" \Rightarrow BF0		
				· · · · ·		
		Total	9			
		_ ~ ~ ~ ~ ~	-	I		

Ο	Solution	Marks	Total	Comments
Q 3	Solution	IVIAI'KS	TOTAL	Comments
(a)	N 7.25	DO		$(\Sigma - z_{00})$
(a)	Mean = 7.35	B2		CAO $(\sum x = 588)$
	= <u>7.3 to 7.4</u>	(B1)		AWFW
	Var $(n) = 10.5$ or Var $(n-1) = 10.6$	B2		AWRT (10.47750 or 10.61013) $(\sum x^2 = 5160)$
	Var $(n \text{ or } n-1) = 10.4 \text{ to } 10.7$	(B1)	4	AWFW
Notes	1 Mean = 182 to $182.4 \Rightarrow B0 B2 max$ 2 Answer quoted as 3.22^2 to 3.26^2 alone $\Rightarrow B2 B1 max$ 3 Answer quoted as 3.22 to 3.26 alone $\Rightarrow B2 B0 max$ 4 If answers not identified, then mark as mean followed by variables and the second			
SC	1 If and only if B0 B0, then award M1 for at least 4 of 1	, 3, 5, 7, 9,	11, 13 seen	or for $\frac{(508 \text{ to } 668)}{80}$ or (6.35 to 8.35)
(b)				
	Mean = <u>182 to 182.4</u>	B1		AWFW; irrespective of value quoted/stated as mean in (a)
	Mean = $175 + (mean in (a))$	(Bdep1)		Evaluated (at least 3sf) using value quoted/stated as mean in (a) and dep on $6 < Mean < 9$ in (a)
	Var (<i>n</i> or <i>n</i> -1) = <u>10.4 to 10.7</u> or	B1		AWFW; irrespective of value quoted/stated as variance in (a)
	Var (<i>n</i> or $n-1$) = <u>value of Var stated in (a)</u>	(Bdep1)	2	Must be identical (at least 3 sf) to value quoted/stated as variance in (a) and dep on $9 < Var < 12$ in (a)
(c)	Mean = <u>5.97 or 5.98 or 5.99</u>	B1		CAO (5.98261)
	$Var = \frac{(Var(b) \text{ or } Var(a))}{30.48^2 \text{ or } 929}$ or $\left(\left(Sd(a) \text{ or } Sd(b)\right)\right)^2$	Mdep1		Dep on $9 < Var < 12$ in (a) or (b) ($30.48^2 = 929.0304$)
	$Var = \left(\frac{(Sd(a) \text{ or } Sd(b))}{30.48}\right)^{2}$ $Var (n \text{ or } n-1) =$			Dep on $3 < Sd < 3.5$ in (a) or (b)
	$\underbrace{0.0112 \text{ or } 0.0113 \text{ or } 0.0114 \text{ or } 0.0115}_{0.0112 \text{ or } 0.0113 \text{ or } 0.0114 \text{ or } 0.0115}$	A1	3	CAO (0.0113 or 0.0114)
		Total	9	

Ω	Solution	Marks	Total	Comments
Q 4	Solution	WIAFKS	Total	Comments
4 (a)				
(a)	r = -0.524	B3		AWRT (-0.52387)
	= -0.52 to -0.53	(B2)		AWFW
	= -0.4 to -0.6	(B1)		AWFW
		(21)		
	Attempt at $\sum x \sum x^2 \sum y \sum y^2 \& \sum xy$			7631 4496183 5031 1966807
	or $\sum x \sum y \sum y \sum y = x \sum x y$	(M1)		& 2943644 (all 5 attempted)
	Attempt at S_{xx} S_{yy} & S_{xy}	()		16786 19810 & -9553 (all 3 attempted)
	1 AA JY AY			M0 mo A0 if r not in $[-1, +1]$
	Attempt at substitution into correct corresponding formula			
	for r	(m1)		
	r = -0.524	(A1)		AWRT
			3	
(b)				
	Moderate or some	Bdep1		Dependent on $-0.6 \le r \le -0.4$
	negative (linear) correlation	•		^
Notes	1 Statements must include the words "moderate or some a			
	"association" or "relationship"; ignore additional comme 2 Use of any of the following terms (even in conjunction wit			
	little or small or weak or slight or fairly or mild or n			
	Q			
	between			
	total weight(s) of 4 apples and 3 bananas	B1		Context; providing $-1 < r < 1$
			2	
Notes	1 "As weights of (4) apples increase weights of (3) bananas of		DE) Bdep0	B1
	2 "As weights/x increase weights/y decrease" (OE) Bdep0 H 3 Allow "mass(as) or gram(c)" instead of "weight(c)"	30		
SCs	3 Allow "mass(es) or gram(s)" instead of "weight(s)" Special cases 1 and 2 depend upon $-1 < r < 1$			
505	1 Any answer suggesting that the correlation between the t	wo variabl	es is nonsen	sical/tenuous/dodgy/rubbish/OE \Rightarrow B1
	2 Any answer suggesting that the correlation between the w			
	nonsensical/tenuous/dodgy/rubbish/OE \Rightarrow B2		r	l .
(c)	TT 11 1 1			
	Howard's claim suggests positive correlation			Correct comparison of claim and
	but	Bdep1		calculated value using positive and
	Hilda's data/calculated value shows negative	- T		negative
	correlation			Dependent on $-1 < r < 0$
	Disagram with an uniost state			
	Disagree with or reject claim			
	or			
	or	Bdep1		OE; dependent on Bdep1
	Claim is (likely to be)	Duchi		or, dependent on bucht
	false/incorrect/wrong/invalid/inaccurate/			
	unsupported/ unreasonable			
	ansupported an casonable		2	
		Total	7	
		I Utai	1	l

Q	Solution	Marks	Total	Comments		
5(a)	Accept the equivalent percentage answers with %-sign (s	ee GN5)				
(i)	P(X < 105) = 0.5 or 1/2 or half or 50%	B1	(1)	CAO; accept nothing else but ignore zeros after 0.5 (eg 0.50) Ignore additional words providing that they are not contradictory		
(ii)	$P(X \neq 100) = 1$ or one or unity or 100%	B1	(1)	CAO; accept nothing else but ignore zeros after decimal point (eg 1.00) Ignore additional words providing that they are not contradictory (eg certain so = 1)		
(iii)	$P(X > 110) = P\left(Z > \frac{110 - 105}{4}\right) =$	M1		Standardising 110 with 105 and 4 but allow $(105 - 110)$		
	P(Z > 1.25) = 1 - 0.89435 = 0.105 to 0.106	A2	(3)	AWFW (0.10565)		
SCs	1 Answer of 0.894 to 0.895 \Rightarrow M1 A1 2 Correct seen standardisation with 0 < incorrect answer 3 Incorrect or no seen standardisation with 0 < incorrect		M1 A1	м1 ао		
(iv)	P(102 < X < 108) = P(-0.75 < Z < 0.75)	M1		CAO -0.75 and +0.75		
	= (p - (1 - p)) or $(2p - 1)$	M1		OE; $0Independent of previous M1$		
	= 0.77337 - (1 - 0.77337)					
	= <u>0.546 to 0.547</u>	A1	(3)	AWFW (0.54674)		
			8			
(b) (i)	5% (0.05) $\Rightarrow z = 1.64$ to 1.65	B1		AWFW (1.64485) Seen; ignore sign		
	$\frac{\pm ((150 \text{ or } 170) - 160)}{\sigma / s} = \pm (1.64 \text{ to } 1.65)$	M1		Standardising 150 with 160 and σ/s ; allow (160-(150 or 170)) and equating to $\pm(1.64 \text{ to } 1.65)$ and with consistent signs		
	$\sigma / s = 6.06 \text{ or } 6.08 \text{ or } 6.10$	A1	3	CAO (6.07957) Seen incorrect rounding \Rightarrow A0		
Notes						
	Parts (a) & (b)(i)	Total	11			

Q	Solution	Marks	Total	Comments		
5	Continued	IVIUI IS	Total			
	Parts (a) & (b)(i)	Total	11			
(b)(ii)						
(A)	P(Y > 150) = 1 - 0.05 = 0.95					
	$P(Y_1 \& Y_2 \& Y_3 > 150) = 0.95^3$					
	= <u>0.857 to 0.858</u>	B1	(1)	AWFW (0.857375)		
Note	1 A calculation of $P(Y > 150) = p$ followed by $p^3 \implies B$	1 only if re	sult falls wi	thin above range		
(B)						
	$V(\overline{Y}) = \frac{(5.1 \text{ to } 7.9)^2}{3}$ or $\frac{(26 \text{ to } 61.1)}{3}$			AWFW (12.32038)		
	or <u>8.6 to 20.4</u>	B1		Can be implied by what follows		
	$Sd(\overline{Y}) = \frac{5.1 \text{ to } 7.9}{\sqrt{3}}$ or <u>2.93 to 4.57</u>			AWFW (3.51004)		
	$P(\overline{Y} > 162.5) = P\left(Z > \frac{162.5 - 160}{(5.1 \text{ to } 7.9)/\sqrt{3}}\right)$	M1		Standardising 162.5 with 160 and $(5.1 \text{ to } 7.9)/\sqrt{3}$ (OE); allow (160 – 162.5)		
	= P(Z > 0.70 to 0.72)	A1		AWFW; ignore sign (0.71224)		
	= <u>0.235 to 0.242</u>	A1	(4)	AWFW (0.23816)		
			(4)			
Notes	1 Do not give BOD for unclear/dubious/questionable identifications of (A) & (B) 2 If answers to (A) & (B) are not identified, then mark as (A) followed by (B) 3 If answers to (A) & (B) are switched, then 0/5 marks 4 In (B), award of B0 \Rightarrow 0/4 marks 5 In (B), cubing (0.235 to 0.242) \Rightarrow B1 M1 A1 A0 (ie not ISW) 6 In (B), for information, use of (5.1 to 7.9) $\Rightarrow z = (0.548 \text{ to } 0.849) \Rightarrow p = (0.197 \text{ to } 0.292)$					
SC	1 Use of distribution of total in (B): B1 for Sd = $(5.1 \text{ to } 7.9)\sqrt{3}$ (OE); M1 for P(Z > $(487.5 - 480)/((5.1 \text{ to } 7.9)\sqrt{3}))$ (OE); A1 for (0.70 to 0.72) A1 for 0.235 to 0.242 (AWFW); award of B0 $\Rightarrow 0/4$ marks					
		Total	16			

Q	Solution	Marks	Total	Comments		
<u>Q</u> 6			Total	Comments		
-	Accept the equivalent percentage answers with %-sign (s	ee GNS)				
(a) (i)	$P(A_1 \cap A_2 \cap A_3) = 0.85^3$					
	= <u>0.614</u>	B1	(1)	AWRT (0.614125)		
(ii)	$P(A_1 \cap A_2 \cap B) = 0.85^2 \times 0.10$	M1		OE; do not accept additional terms		
	or (0.0722 to 0.0723) or 289/4000			(0.07225)		
	<u>× 3</u>	A1		OE		
	= <u>0.216 to 0.217</u>	A1	(3)	AWFW (0.21675)		
(iii)	$P(A \cap B \cap C) = 0.85 \times 0.10 \times 0.05$	M1		OE; do not accept additional terms		
	or (0.0042 to 0.0043) or 17/4000			(0.00425)		
	<u>× 6</u>	A1		OE		
	= <u>0.025 to 0.026</u>	A1	(3)	AWFW (0.0255)		
Notes	1 Deduct 1 mark for at least one fractional final answer of (i) 4913/8000; (ii) 867/4000; (iii) 51/2000					
	2 Award A0 for each alternative fractional final answer [eg					
	Part (a)	Total	7			

0	Solution	Marks	Total	Comments
6	Accept the equivalent percentage answers with %-sign (s		Iotai	Comments
0	Part(a)	Total	7	
(b)		10001	,	
(i)	(a) $P(OD') = 0.10 \times 0.75 + 0.05 \times 0.10$	M1		
(1)		A1		CAO
	PLUS 0.85 (× 1) = 0.85 + 0.075 + 0.005 = 0.93	A1 A1		CAO
		A1		
	$\begin{array}{c} 0r \\ \hline (0) \\ \hline \\ 0 \\ \hline \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	() (1)		
	(β) P(OD) = 0.10 × 0.25 + 0.05 × 0.90	(M1)		See SC 3 below
	$+ 0.85 \times 0$	(1 1)		
	= 0.025 + 0.045 = 0.07	(A1)		CAO
	P(OD') = 1 - 0.07 = 0.93	(A1)		САО
	or			
	(γ)			
	Side Effect			Accept probabilities rather than percentages
	NoneSlightSevereTotalChange02.54.57.0	(B2)		(0, 2.5, 4.5) or (85, 7.5, 0.5) CAO
	No change 85 7.5 0.5 93.0	(D2)		(0, 2.3, 4.3) 01 (03, 7.3, 0.3) CHO
	Total 85 10.0 5.0 100.0			
		(B1)		0.93 CAO
			(3)	L
Note	1 Accept fractional answers of 93/100 and 7/100			
SCs	1 In (α), P(OD') = 0.10 × 0.75 + 0.05 × 0.10 + 0.15 (× 1			
	2 In (β), P(OD) = 0.10 × 0.25 + 0.05 × 0.90 = 0.07 \Rightarrow 3 In (β), P(OD) = 0.10 × 0.25 + 0.05 × 0.90 + (not 0.85)			
	5 In (p), $P(OD) = 0.10 \times 0.25 + 0.05 \times 0.90 + (not 0.85)$ then $P(OD') = 0.93 \implies A1 \text{ (max 2 marks)}$	x(0) = 0.0	$J \rightarrow MI$	AU
	4 In (β), P(OD) = 0.10 × 0.25 + 0.05 × 0.90 + (non-zero	term) ⇒	M1 A0 A0	(max 1 mark)
(ii)				
	1 0 02 0 07	M1		Numerator; OE
	$P(OD \mid B \cup C) = \frac{1 - 0.93}{0.10 + 0.05} \text{ or } \frac{0.07}{0.10 + 0.05}$	M1		Denominator
	0.10 + 0.05 $0.10 + 0.05$	M1		(See Notes 1 & 2 below)
	$= 7/15$ or 0.466 to 0.467 or $0.4\dot{6}$	A1		CAO/AWFW/CAO (0.46667)
	or			
		(M1)		Either term (OE)
	$P(OD B \cup C) = \frac{2}{3} \times 0.25 + \frac{1}{3} \times 0.9$	(M1) (M1)		PLUS other term (OE)
	3 3	()		
		/ • • •		
	= <u>7/15 or 0.466 to 0.467 or 0.46</u>	(A1)		CAO/AWFW/CAO (0.46667)
	or			
	From table, $P(OD B \cup C)$			
	= <u>7/15 or 0.466 to 0.467 or 0.46</u>	(B3)		CAO/AWFW/CAO (0.46667)
			(3)	
Notes	1 A mark of M1 may be available in a fraction even if the r		bability ans	
	2 Values of $(1 - 0.93)$ or 0.07 or 0.15 seen but not in a fr			
			6	
		Total	13	

Q	Solution	Marks	Total	Comments
7	Accept 3 dp rounding of probabilities from tables	Accept t	he equivale	nt percentage answers with %-sign (see GN5)
(a) (i)	$P(Blond = 5) = {30 \choose 5} (0.25)^5 (0.75)^{25}$ = 142506 × 0.00097656 × 0.00075254 or = 0.2026 - 0.0979	M1		Correct expression Can be implied by a correct answer Ignore additional expressions
	= <u>0.104 to 0.105</u>	A1	2	AWFW (0.104728 / 0.1047)
(ii)	P(Blond < 10) = 0.803	B1	1	AWRT (0.8034)
(iii)	$P(6 \leq Blond \leq 12) =$			
	0.9784 or 0.9493 (p_1)	M1		Seen as first term in a subtraction
	MINUS			
	0.2026 or 0.3481 (p_2)	M1		Seen as second term in a subtraction
	= <u>0.775 to 0.776</u>	A1	3	AWFW (0.7758)
Notes	1 For no method or calculation of individual terms: award B2 for 0.630 to 0.631 (AWFW); B2 for 0.601 to 0.602 2 Answers seen using $[(0.7974 \text{ or } 0.6519) - (0.0216 \text{ or } 0.6519)]$ 3 Answers seen using $[1 - (p_1 - p_2)]$ even after $(p_1 - p_2)$ 4 Use of $p_1 \times p_2$ or $p_1 \div p_2$ or $p_1 + p_2$ or p_1 only or p_2 or p_2 or $p_1 + p_2$ or $p_1 + p_2$ or p_2 or $p_1 + p_2$ or p_2 or p_3 or p_2 or p_3 or p_2 or p_3 o	(AWFW); I 0.0507)] [ie [eg 1 – (0.	30 for anythe $(1 - p_2) - 0.20$	hing else $(1 - p_1)$] \Rightarrow M1 M1 A1 max
(iv)	Mean = $np = 7.5 \implies P(Blond \ge 8)$			
	= 1 - 0.5143	M2	-	
	= (1 - 0.6736) or 0.3264			
	or = 0.5143	(M1)		
	or $= (1 - 0.3481)$ or 0.6519		-	
	= <u>0.485 to 0.486</u>	A1	3	AWFW (0.4857)
Note	1 For calculation of individual terms or no method: award B1 for 0.514 to 0.515 (AWFW); B1 for 0.651 to 0.652			
	Part(a)	Total	9	

Q	Solution	Marks	Total	Comments			
7	Accept 3 dp rounding of probabilities from tables Accept the equivalent percentage answers with %-sign (see GN5)						
	Part(a)	Total	9				
(b) (i)	Mean = $\underline{np} = \underline{16}$	B1		Equating; seen or used			
	$np(1-p)$ or npq or $\sqrt{np(1-p)}$ or \sqrt{npq} = 2.4 ² or 5.76 or 2.4 but not $\sqrt{2.4}$	M1		Equating; seen or used			
	$np(1-p)$ or $npq = 2.4^2$ or 5.76	A1		Equating; seen or used			
	p = 0.64 and $n = 25$	A1 A1	5	Each CAO			
Notes	1 Equating npq to 2.4 (OE) then \Rightarrow B1 M1 A0 A0 A0 (max) followed by M0 A0 in (ii) 2 For any method, answer of $p = 0.64$ (CAO) and $n = 25$ (CAO) $\Rightarrow 5$ marks 3 For method of 'trial & improvement': B1 (equating/use of $np = 16$); M1 (at least one seen trial combination of either integer n or $0); m1 (at least one seen attempt at evaluating npq with both integer n and 0 but comparison with 5.76/2.4 not required); A1 (p = 0.64 CAO); A1 (n = 25 CAO)$						
(ii)	$P(Y = 20) = {\binom{25}{20}} (0.64)^{20} (0.36)^{5}$ = 53130 × 0.00013292 × 0.0060466	M1		Correct expression Can be implied by a correct answer Do not ignore additional expressions			
	= 0.0426 to 0.0428	A1	2	AWFW (0.042702)			
		Total	16				