

Oxford Cambridge and RSA Examinations

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS CONCEPTS FOR ADVANCED MATHEMATICS, C2

4752

Specimen Paper

Additional materials: Answer booklet Graph paper MEI Examination Formulae and Tables (MF 2)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, Centre number and candidate number in the spaces provided on the answer booklet.
- Answer **all** the questions.
- You may use a graphical or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The total number of marks for this paper is **72**.

© MEI/OCR 2004 Oxford, Cambridge and RSA Examinations

Section A (36 marks)

1	Find the values of x for which $\sin x = 2\cos x$ given that $0^\circ < x < 360^\circ$.	[3]

2A sector of a circle has radius 15 cm and angle 0.6 radians.Find the perimeter and area of the sector.[4]

3 Given that
$$y = 6x^2 + \sqrt{x} - 17$$
, find $\frac{dy}{dx}$. [4]

4 The first two terms of a geometric sequence are 6144, 1536.

(i)	Find the exact value of the 10^{th} term.	[2]
-----	---	-----

- (ii) Find the sum of the first ten terms, giving your answer to 4 decimal places. [2]
- (iii) Find the sum to infinity of the sequence.

5 Some values of the function $f(x) = \frac{1}{1+x^2}$ are given in the table below.

The figures are rounded to 5 decimal places.

x	0.0	0.2	0.4	0.6	0.8	1.0
$\mathbf{f}(\mathbf{x})$		0.96154	0.86207		0.60976	

(i) Find the values of f(x) missing from the table.

(ii)	Use the trapezium rule with 5 strips to estimate the value of:	$\int_{0}^{1} \frac{1}{1+x^{2}} dx .$	[4]
---------------	--	--	-----

6 The gradient of a curve is given by:
$$\frac{dy}{dx} = 6x^2 - \frac{5}{x^2}$$
.

The curve passes through the point (-1, 3). Find the equation of the curve.

[1]

[5]

[1]

The graph shows the curve with equation y = x(2 - x). Find the area of the region enclosed between the curve and the *x*-axis.

In the gales last year, a tree started to lean and needed to be supported by struts that were wedged as shown above. There is also a simplified diagram giving dimensions. Calculate the angle the tree makes with the vertical, giving your answer to the nearest degree.

[5]

[5]

4

9 In a race, skittles S_1, S_2, S_3, \dots are placed in a line, spaced 2 metres apart.

Contestants run from the starting point O, *b* metres from the first skittle. They pick up the skittles, one at a time and in order, returning them to O each time.

(i) Show that the total distance of a race with 3 skittles is 6(b+2) metres. [1]

- (ii) Show that the total distance of a race with *n* skittles is 2n(b+n-1) metres. [4]
- (iii) With b = 5, the total distance is 570 metres. Find the number of skittles in this race. [3]

A football coach uses this race for training the team. The total distance for each contestant is exactly 1000 metres. The skittles are still 2 metres apart and the value of b is a whole number less than 20.

(iv) How many skittles are there in this form of the race?

GCE MEI Structured Mathematics Specimen Question Paper C2 [3]

10 A virus is spreading through a population and so a vaccination programme is introduced.

Thereafter, the numbers of new cases are as follows:

Week number, <i>x</i>	1	2	3	4	5
Number of new cases, y	240	150	95	58	38

The number of new cases, y, in week x is to be modelled by an equation of the form $y = pq^x$, where p and q are constants.

(i) Copy and complete this table of values.

x	1	2	3	4	5]
$\log_{10} y$						
						[1]

(ii)	Plot a graph of $\log_{10} y$ against <i>x</i> , taking values of <i>x</i> from 0 to 8.	[2]
------	---	-----

- (iii) Explain why the graph confirms that the model is appropriate. [2]
- (iv) Use the graph to predict the week in which the number of new cases will fall below 20.Explain why you should treat your answer with caution. [3]
- (v) Estimate the values of p and q. Use your values of p and q, and the equation $y = pq^x$, to calculate the value of y when x = 3. Comment on your answer. [5]

11 The equation of a curve is given by $y = x^4 - 8x^2 + 7$.

(i)	Use calculus to show that the function has a turning point at (2, -9) and find the coordinates of the other turning points.	[7]
(ii)	Sketch the curve.	[2]
(iii)	Show that the line $y = -12x + 12$ is a tangent to the curve at one of the points where it	

crosses the *x*-axis.

[3]