

Mark Scheme (Final) Summer 2007

GCE

GCE Mathematics (6684/01)

June 2007 6684 Statistics S2 Mark Scheme

Question Number	Scheme	Marks
1(a)	Continuous uniform distribution or rectangular distribution.	B1
	$\frac{1}{5}$ 0 may be implied by start at y axis	B1
	0 0 0 0 0 0 0 0 0 0	B1 (3)
(b)	E(X) = 2.5 ft from their a and b, must be a number	B1ft
	$Var(X) = \frac{1}{12}(5-0)^2 \qquad \text{or attempt to use } \int_0^5 f(x)x^2 dx - \mu^2 \qquad \text{use their } f(x)$	M1
	$=\frac{25}{12}$ or 2.08 o.e awrt 2.08	A1 (3)
(c) (d)	$P(X > 3) = \frac{2}{5} = 0.4$ $P(X = 3) = 0$ 2 times their 1/5 from diagram	B1ft (1) B1 (1)
		(Total 8)

Question Number		Scheme		Marks
2	$\begin{tabular}{ll} \underline{One \ tail \ test} \\ \underline{Method \ 1} \\ H_o: \lambda = 5 \ (\lambda = 2.5) \\ \mu \\ H_1: \lambda > 5 \ (\lambda > 2.5) \\ \end{tabular}$	may us	se λ or	B1 B1 M1
	= 1 - 0.9858 $= 0.0142$ $0.0142 < 0.05$ (Reject H ₀ .) There is signific is polluting the river with back	[$P(X \ge 5) = 1 - 0.8912 = 0.1088$] att $P(X \ge 7)$ $P(X \ge 6) = 1 - 0.9580 = 0.0420$ CR $X \ge 6$ awrt 0.0142 $7 \ge 6$ or 7 is in critical region or 7 is significant ant evidence at the 5% significance level that the		M1 A1 M1 B1
_	The scientists claim is justification Method 2 $H_0: \lambda = 5 \ (\lambda = 2.5)$ $H_1: \lambda > 5 \ (\lambda > 2.5)$ $X \sim \text{Po} \ (2.5)$ $P(X < 7)$	may use	e implied	(7) Total 7
	l	$P(X < 6) = 0.9580$ $CR \ X \ge 6$ wrt 0.986 $7 \ge 6$ or 7 is in critical region or 7 is significant ant evidence at the 5% significance level that the cteria.	e factory	M1 A1 M1 B1 (7)

I			
Two tail test Method 1			
$H_o: \lambda = 5 \ (\lambda = 2.5)$ $H_1: \lambda \neq 5 \ (\lambda \neq 2.5)$	may use λ or μ	B1 B0	
<i>X</i> ~ Po (2.5)		M1	
$P(X \ge 7) = 1 - P(X \le 6)$ = 1 - 0.9858	$ P(X \ge 6) = 1 - 0.9580 = 0.0420] $	M1	
= 0.0142	$CR X \ge 7$ awrt 0.0142	A1	
0.0142 < 0.025	$7 \ge 7$ or 7 is in critical region or 7 is significant	M1	
(Reject H ₀ .) There is significe is polluting the river with ba	cant evidence at the 5% significance level that the factory cteria.	B1	
or The scientists claim is justifi			(7)
$\frac{\text{Method 2}}{\text{H}_{\text{o}}: \lambda = 5 \ (\lambda = 2.5)}$ $\text{H}_{1}: \lambda \neq 5 \ (\lambda \neq 2.5)$	may use λ or μ	B1 B0	
<i>X</i> ~ Po (2.5)		M1	
P(X < 7)	[P(X < 6) = 0.9580] att $P(X < 7)$ $P(X < 7)$ $P(X < 7)$		
= 0.9858	$CR X \ge 7 \qquad awrt 0.986$	M1A1	
0.9858 > 0.975	$7 \ge 7$ or 7 is in critical region or 7 is significant	M1	
(Reject H ₀ .) There is significe is polluting the river with ba	cant evidence at the 5% significance level that the factory cteria.	B1	
or The scientists claim is justifi			(7)

Question Number	Scheme			Marks
3(a)	$X \sim \text{Po} (1.5)$	need Po and 1.5	B1	(1)
(b)	Faulty components occur at a constant rate. Faulty components occur independently or randomly. Faulty components occur singly.	any two of the 3 only need faulty once	B1 B1	(2)
(c)	$P(X = 2) = P(X \le 2) - P(X \le 1)$ or $\frac{e^{-1.5}(1.5)^2}{2}$ = 0.8088 - 0.5578		M1	
	= 0.8088 - 0.3378 $= 0.251$	awrt 0.251	A1	(2)
(d)	$X \sim \text{Po}(4.5)$	4.5 may be implied	B1	(2)
	$P(X \ge 1) = 1 - P(X = 0)$ $= 1 - e^{-4.5}$ $= 1 - 0.0111$ $= 0.9889$	awrt 0.989	M1 A1	(3)
				Total 8

Question Number	Scheme		Marks
4	Attempt to write down combinations	at least one seen	M1
	(5,5,5), (5,5,10) any order $(10,10,5)$ any order, $(10,10,10)$		A1
	(5,10,5), (10,5,5), (10,5,10), (5,10,10),	all 8 cases considered. May be implied by (10,5,10) and 3 * (5,5,10)	A1
	median 5 and 10		B1
	Median = 5 $P(M = m) = \left(\frac{1}{4}\right)^3 + 3\left(\frac{1}{4}\right)^2 \left(\frac{3}{4}\right) = \frac{10}{64} = 0.15625$	add at least two prob using ½ and ¾. identified by having same median of 5 or 10 Allow no 3 for M	M1 A1
	Median = 10 P(M = m) = $\left(\frac{3}{4}\right)^3 + 3\left(\frac{3}{4}\right)^2 \left(\frac{1}{4}\right) = \frac{54}{64} = 0.84375$		A1 (7) Total 7

Question Number		Scheme		Marks
5(a)	If $X \sim B(n,p)$ and n is large, $n > 50$ p is small, $p < 0.2$ then X can be approximated by $Po(np)$		B1 B1	(2)
(b)	P(2 consecutive calls) = 0.01 ² = 0.0001		M1 A1	(2)
(c)	$X \sim B(5, 0.01)$	may be implied	B1	
	P(X>1) = 1 - P(X=1) - P(X=0) = 1 - 5(0.01)(0.99) ⁴ - (0.99) ⁵ = 1 - 0.0480298 0.95099		M1	
	= 0.00098	awrt 0.00098	A1	(3)
(d)	$X \sim B(1000, 0.01)$ Mean = $np = 10$ Variance = $np(1-p) = 9.9$	may be implied by correct mean and variance	B1 B1 B1	(3)
(e)	$X \sim \text{Po}(10)$			
	$P(X > 6) = 1 - P(X \le 6)$ = 1 - 0.1301 = 0.8699	awrt 0.870	M1 A1	(2)
				Total 12

Question Number		Scheme	Marks
6	$\begin{array}{l} \underline{One\ tail\ test} \\ \underline{Method\ 1} \\ H_o: p = 0.2 \\ H_1: p > 0.2 \end{array}$		B1 B1
	$X \sim B(5, 0.2)$	may be implied	M1
	$P(X \ge 3) = 1 - P(X \le 2)$ = 1 - 0.9421	$ P(X \ge 3) = 1 - 0.9421 = 0.0579 att P(X \ge 3) P(X \ge 4) $ $ P(X \ge 4) = 1 - 0.9933 = 0.0067 $	M1
	= 0.0579	$CR X \ge 4 \qquad \text{awrt } 0.0579$	A1
	0.0579 > 0.05	$3 \le 4$ or 3 is not in critical region or 3 is not significant	M1
-		insufficient evidence at the 5% significance level that umber of times the taxi/driver is late.	B1 (7) Total 7
	$\label{eq:method_2} \begin{split} \underline{\text{Method 2}} \\ H_o: p &= 0.2 \\ H_1: p &> 0.2 \end{split}$		B1 B1
	$X \sim B(5, 0.2)$	may be implied	M1
	P(X < 3) =	P(X < 3) = 0.9421	
	0.9421	$CR X \ge 4 \qquad awrt 0.942$	M1A1
	0.9421 < 0.95	$3 \le 4$ or 3 is not in critical region or 3 is not significant	M1
		insufficient evidence at the 5% significance level that umber of times the taxi/driver is late. ified	B1 (7)

Question Number	Scheme	Marks
7(a) i	If $X \sim B(n,p)$ and $n \text{ is large or } n > 10 \text{ or } np > 5 \text{ or } nq > 5$ $p \text{ is close to } 0.5 \text{ or } nq > 5 \text{ and } np > 5$ then $X \text{ can be approximated by } N(np,np(1-p))$	B1 B1
ii	mean = np	B1 (2)
	variance = $np(1-p)$ must be in terms of p	B1
		(2)
(b)	$X \sim N (60, 58.2)$ or $X \sim N (60, 7.63^2)$ 60, 58.2	B1, B1
	$P(X \ge 40) = P(X > 39.5)$ using 39.5 or 40.5	M1
	$=1-P\left(z<\pm\left(\frac{39.5-60}{\sqrt{58.2}}\right)\right)$ standardising 39.5 or 40 or 40.5 and their μ and σ $=1-P(z<-2.68715)$	M1
	$= 0.9965 \qquad \qquad \text{allow answers in range } 0.996 - 0.997$	A1dep on both M
		(5)
(c)	E(X) = 60 may be implied or ft from part (b)	B1ft
	Expected profit = $(2000 - 60) \times 11 - 2000 \times 0.70$ = £19 940.	M1 A1 (3) Total 12

Question Number	Scheme	Marks
8(a) (b)	f(x) 0.5 0 may be implied by start at y both patio must be straight Mode is $x = 3$	B1 B1 (3)
(c)	$F(x) = \int_0^x \frac{1}{6}t dt (\text{for } 0 \le x \le 3)$ $= \frac{1}{12}x^2$ $F(x) = \int_3^x 2 - \frac{1}{2}t dt; + \int_0^3 \frac{1}{6}t dt (\text{for } 3 < x \le 4)$ $= 2x - \frac{1}{4}x^2 - 3$ ignore limits for M must use limit of 0 need limit of 3 and variable upper limit; need limit 0 and 3	(1) M1 A1 M1; M1
(d)	$F(x) \begin{cases} 0 & x < 0 \\ \frac{1}{12}x^2 & 0 \le x \le 3 \\ 2x - \frac{1}{4}x^2 - 3 & 3 < x \le 4 \\ 1 & x > 4 \end{cases}$ middle pair ends $F(m) = 0.5$ either eq eq for their $0 \le x \le 3$ $x = \sqrt{6} = 2.45$ $\sqrt{6}$ or awrt 2.45	B1 ft B1 (7) M1 A1ft A1 (3) Total 14