Surname						
Surname	Oth	er names				
Edexcel GCE	Centre Number	Candidate Number				
Chemistry Advanced Unit 4: General Principles of Chemistry I – Rates, Equilibria and Further Organic Chemistry (including synoptic assessment)						
Equilibria and	d ⁻ Further Orga	nic Chemistry				
Equilibria and	d Further Orga noptic assessm	nic Chemistry ent) Paper Reference				
Equilibria and (including sy	d Further Orga noptic assessm	nic Chemistry nent)				

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.

Information

- The total mark for this paper is 90.
- The marks for **each** question are shown in brackets – use this as a guide as to how much time to spend on each question.
- Questions labelled with an **asterisk** (*) are ones where the quality of your written communication will be assessed
 you should take particular care with your spelling, punctuation and arapped
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

edexcel

7/7/7/2/

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box ⊠. If you change your mind, put a line through the box ⊠ and then mark your new answer with a cross ⊠.

1 Propanone reacts with iodine in acidic solution as shown in the equation below.

 $CH_3COCH_3(aq) + I_2(aq) \rightarrow CH_3COCH_2I(aq) + H^+(aq) + I^-(aq)$

The rate equation for the reaction is

Rate = k[CH₃COCH₃(aq)][H⁺(aq)]

(1)

(1)

(a) The most appropriate technique to investigate the rate of this reaction is

- A titrating samples of reaction mixture with acid.
- **B** measurement of optical activity.
- \square C measurement of the volume of gas given off.
- **D** colorimetry.

(b) Which statement about the reaction is **not** correct?

- A The overall order of reaction is second order.
- \square **B** The units of the rate constant are dm³ mol⁻¹ s⁻¹.
- C The rate constant increases with temperature.
- **D** The rate increases four times when the concentration of propanone and iodine are both doubled.

7 The following methods can be used to distinguish between pairs of organic co without further tests.	ompounds
A Warm each compound with Fehling's or Benedict's solution.	
B Add solid sodium carbonate to each compound.	
C Add 2,4-dinitrophenylhydrazine (Brady's reagent) to each compound.	
D Add water, drop by drop, to each compound.	
(a) Which test would distinguish propanone from propan-1-ol?	
	(1)
B	
D	
(b) Which test would distinguish between aqueous solutions of ethanoic acid a	nd ethanol?
\square A	(-)
B	
\square D	
(c) Which test would distinguish ethanoyl chloride from ethanol?	(1)
	~ /
B	
\Box C	
\square D	
(Total for Question	7 = 3 marks)

Use this space for any rough working. Anything you write in this space will gain no credit.

_		roduct has the formula
	A 🛛	CH ₃ I
[B B	CHI ₃
[C	CH ₃ COCH ₂ I
[D 🗵	CH ₃ COCI ₃
		(Total for Question 8 = 1 mark
		the following reaction mixtures are warmed, which will contain ethanoic acid as the products?
[🛛 A	Ethyl methanoate and sodium hydroxide solution.
[B	Ethyl methanoate and dilute sulfuric acid.
[C 🛛	Methyl ethanoate and sodium hydroxide solution.
[D 🛛	Methyl ethanoate and dilute sulfuric acid.
		(Total for Question 9 = 1 mark
	-	ectra of the compounds with the formulae CH ₃ CH(OH)CH ₃ and CH ₃ CH ₂ CH ₂ OH distinguished by
	A 🛛	the value of m/e of the molecular ion in the mass spectrum.
[
	B	the presence of a fragment with $m/e = 15$ in the mass spectrum.
[⊠ B ⊠ C	the presence of a fragment with $m/e = 15$ in the mass spectrum. the presence of an absorption peak due to O–H in the infrared spectrum.
[
[C	the presence of an absorption peak due to O–H in the infrared spectrum.
[C D	the presence of an absorption peak due to O–H in the infrared spectrum. the number of peaks in the nmr spectrum.
[[[11]	C D	the presence of an absorption peak due to O–H in the infrared spectrum. the number of peaks in the nmr spectrum. (Total for Question 10 = 1 mark)
[[[11]	C D Which	the presence of an absorption peak due to O–H in the infrared spectrum. the number of peaks in the nmr spectrum. (Total for Question 10 = 1 mark) of the following has two singlet peaks in its nmr spectrum?
[[[11] [C D Which	the presence of an absorption peak due to O–H in the infrared spectrum. the number of peaks in the nmr spectrum. (Total for Question 10 = 1 mark of the following has two singlet peaks in its nmr spectrum? Methanal, HCHO
[[11 \ [[C D Which A B	the presence of an absorption peak due to O–H in the infrared spectrum. the number of peaks in the nmr spectrum. (Total for Question 10 = 1 mark) of the following has two singlet peaks in its nmr spectrum? Methanal, HCHO Methanol, CH ₃ OH

	CH ₃	
17 The	nmr spectrum of 2,2-dimethylpropane, H_3C-C-C	THe contains
12 110		chi, contains
	C one quartet peak.	
\mathbf{X}	D four quartet peaks.	
		(Total for Question 12 = 1 mark)
13 Whie	ch of the following solutions has the lowest pH?	
	• 0.010 mol dm ^{-3} hydrochloric acid.	
\times	3 0.100 mol dm ^{-3} hydrochloric acid.	
\mathbf{X}	$C = 0.010 \text{ mol dm}^{-3}$ ethanoic acid.	
\mathbf{X}	• 0.100 mol dm ^{-3} ethanoic acid.	
		(Total for Question 13 = 1 mark)
	ch of the following solutions, when mixed, would re than 7?	nake a buffer with pH
	Methanoic acid and sodium methanoate.	
\mathbf{X}	B Sodium hydroxide and sodium chloride.	
	C Ammonia and ammonium chloride.	
\mathbf{X}	Ammonium chloride and ammonium ethanoate	
		(Total for Question 14 = 1 mark)
Use	this space for any rough working. Anything you	u write in this space will gain no credit.
Use	this space for any rough working. Anything you	u write in this space will gain no credit.
Use	this space for any rough working. Anything you	u write in this space will gain no credit.
Use	this space for any rough working. Anything you	u write in this space will gain no credit.
Use	this space for any rough working. Anything you	u write in this space will gain no credit.

	$N_2(g) + 3H_2(g) \implies 2NH_3(g) \Delta H = -92 \text{ kJ mol}^{-1}$
Which	statement is not correct?
A	The units of $K_{\rm p}$ are atm ⁻² .
B	$K_{\rm p}$ increases as temperature is decreased.
C	$K_{\rm p}$ increases when the pressure increases.
D D	$K_{\rm p}$ increases when the total entropy change, $\Delta S_{\rm total}$, increases.
	(Total for Question 15 = 1 mark
6 1,2-dia	chloroethane decomposes in the presence of a catalyst.
($CH_2ClCH_2Cl(g) \rightleftharpoons CH_2 = CHCl(g) + HCl(g)$ $\Delta H = +51 \text{ kJ mol}^{-1}$
	of the following would result in an increase in the equilibrium yield of ethene?
A	Increasing the temperature.
B	Increasing the pressure.
C	Increasing the surface area of the catalyst.
D 🛛	Changing the catalyst to a more efficient one.
	(Total for Question 16 = 1 marl
	TOTAL FOR SECTION A = 20 MARK

SECTION B

Answer ALL the questions. Write your answers in the spaces provided.

17 A bromoalkane has the molecular formula C_4H_9Br . The ionic equation for the hydrolysis of this compound with aqueous sodium hydroxide is shown below.

 $C_4H_9Br + OH^- \rightarrow C_4H_9OH + Br^-$

(a) The rate of hydrolysis was investigated by mixing a large excess of the bromoalkane with aqueous sodium hydroxide, and measuring the time taken for **all** the hydroxide ions to be used up. This was carried out with different initial concentrations of the bromoalkane and the hydroxide ions. The results are shown in the table below.

			50X1		
	Experiment	$[C_4H_9Br] /mol dm^{-3}$	[OH ⁻] /mol dm ⁻³	Time for OH ⁻ to be used up/s	Initial rate /mol dm ⁻³ s ⁻¹
	1	0.017	0.0012	42	2.9×10^{-5}
	2	0.034	0.0012	21	5.7×10^{-5}
	3	0.034	0.0020	35	
				·	
	(i) Complete th	ne missing value	of the initial rate	in the table.	(1)
		1 64	*. 1		
		eference to the c		C_4H_9Br and to OH^- .	Justify each
					(3)
Order v	with respect to C	₄ H ₉ Br			
Reason	1				
Reason					
Order v	with respect to O	H ⁻			
Reason	L				
		, , , , , , , , , , , , , , , , , , ,	<i>.</i> 1		
	(III) Deduce the	rate equation for	the reaction.		(1)

(iv) Use the results for the first experiment in the table to calculate the rate constant and give its units.	(2)
its	
(b) What evidence supports the theory that there is more than one step in the reaction mechanism?	(1)
(c) Write the mechanism for the hydrolysis of C ₄ H ₉ Br which is consistent with your rate equation. Show the structure of C ₄ H ₉ Br clearly in your mechanism.	e (3)

mechanisms.			(2)
	(Total	for Question 17 =	= 13 marks)

|____

(b) Butanoic acid and propane-1,2,3-triol are formed when fats in milk are hydrolysed. The presence of milk fat in low fat spreads is detected by hydrolysing the spread, and then analysing the products using gas chromatography (also called gas-liquid chromatography, GLC).

(i) Explain why nitrogen, rather than oxygen, is used as the carrier gas in GLC.

(1)

(ii) What property determines whether butanoic acid or propane-1,2,3-triol would move faster through the chromatography column?

(1)

(c) The formula of 3-hydroxybutanoic acid is shown below.

(i) 3-hydroxybutanoic acid can form a polymer which is used to make "green" packaging as it is biodegradable.

Draw a section of this polymer, showing TWO monomer units. Clearly show any double bonds.

(2)

(ii) The polymer cannot be used in acidic conditions. What reaction would occur when the polymer is in prolonged contact with an acid?

BLANK PAGE

ic acid can be manufactured by the following reaction, which is carried out on 150 °C and 200 °C.	
$CH_3OH(g) + CO(g) \rightleftharpoons CH_3COOH(g)$	
illibrium at a pressure of 32.0 atm. At 175 °C, the equilibrium partial pressure of	
Write the expression for the equilibrium constant in terms of pressure, K_p , for this reaction.	(1)
Calculate the partial pressures of methanol and carbon monoxide at equilibrium	. (2)
onoxide	
) Calculate the value of K_p for this reaction at 175 °C. Include a unit in your answer and give your answer to three significant figures.	(2)
	calculate the partial pressures of methanol and carbon monoxide at equilibrium Calculate the partial pressures of methanol and carbon monoxide at equilibrium

(i)	Complete the table belo equilibrium mixture.				(2)
	[CH ₃ OH	СО	CH ₃ COOH	
	Number of moles at start	50.0	50.0	0	
	Number of moles at equilibrium				
(ii)	Calculate the partial pre	essure of ethanoi	c acid in the e	quilibrium mixture.	(1)
	Calculate the partial pre				
					(1)

$CH_3OH(g) + CO(g) \rightleftharpoons CH_3COOH(g)$	
(i) The equilibrium constant for the formation of ethanoic act	d. (1)
(ii) The equilibrium yield of ethanoic acid.	(1)
) In industry, catalysts are used even though they are often expension State and explain ONE benefit to the environment resulting fr in industrial processes.	
in industrial processes.	om the use of catalysts

|____

20 Vinegar is used as a food preservative. It is an acidic solution containing ethanoic acid, CH ₃ COOH.	
(a) A titration was carried out to measure the concentration of ethanoic acid in a sample of vinegar. 25.0 cm ³ of a vinegar solution was titrated with a solution of sodium hydroxide, concentration 0.250 mol dm ⁻³ . The concentration of the ethanoic acid in the vinegar solution was found to be 0.125 mol dm ⁻³ .	
(i) Calculate the pH of $0.250 \text{ mol dm}^{-3}$ sodium hydroxide at 298 K.	
$[K_{\rm w} = 1.00 \times 10^{-14} \mathrm{mol}^2 \mathrm{dm}^{-6} \mathrm{at} 298 \mathrm{K.}]$	(2)
(ii) Write the expression for the acid dissociation constant, K_a , for ethanoic acid.	(1)
(iii) Calculate the pH of 0.125 mol dm ⁻³ ethanoic acid at 298 K.	
[K_a for ethanoic acid is 1.7×10^{-5} mol dm ⁻³ at 298 K.]	(2)
(iv) When half the ethanoic acid is neutralized, the concentration of the remaining ethanoic acid equals the concentration of the sodium ethanoate which has formed. What is the pH of the mixture at this point? Justify your answer.	
рН	(2)

	SECTION C	
	Answer ALL the questions. Write your answers in the spaces provided.	
21	 (a) Crystals of hydrated cobalt(II) chloride, CoCl₂.6H₂O, lose water when they are heated, forming anhydrous cobalt(II) chloride, CoCl₂. 	
	$CoCl_2.6H_2O(s) \rightarrow CoCl_2(s) + 6H_2O(l)$	
	(i) Calculate the entropy change of the system, $\Delta S_{\text{system}}^{\ominus}$, at 298 K. Include a sign and units in your answer. You will need to refer to your data booklet.	(2)
	(ii) Explain whether the sign of your answer to (a)(i) is as expected from the equation for the reaction.	(1)
	(iii) The standard enthalpy change for the reaction, ΔH^{\ominus} , is +88.1 kJ mol ⁻¹ . Calculate the entropy change in the surroundings, $\Delta S^{\ominus}_{surroundings}$, at 298 K for this reaction. Include a sign and units in your answer.	(2)
	(iv) Calculate the total entropy change, $\Delta S_{\text{total}}^{\ominus}$, at 298 K for the reaction.	(1)

 (v) Does your answer to (a)(iv) indicate whether hydrated cobalt(II) chloride can be stored at 298 K without decomposition? Explain your answer. 	(1)
b) A student attempted to measure the enthalpy change of solution of anhydrous cobalt(II) chloride by adding 2.00 g of cobalt(II) chloride to 50.0 cm ³ of water in a	
well-insulated container. A temperature rise of 1.5 °C was recorded.	
The student used a balance which reads to 0.01g, a 50.0 cm ³ pipette, and a thermometer which can be read to 0.25 °C.	
(i) Which measuring instrument should be changed to give a result which is closer to the accepted value? Justify your answer.	
1 55	(2)
 (ii) Suggest ONE other change the student could make to give a result which is closer to the accepted value. Justify your suggestion. 	(2)

*(c) The lattice energies of magnesium chloride, MgCl₂, calcium chloride, CaCl₂, and strontium chloride, SrCl₂ are shown in the table below.

Chloride	Lattice energy/kJ mol ⁻¹
MgCl ₂	-2526
CaCl ₂	-2258
SrCl ₂	-2156

(i) Use data on ionic radii, from your data booklet, to explain the trend in these values. Estimate a value for the lattice energy of cobalt(II) chloride, giving ONE piece of data to justify your estimate.

(4)

(ii) Explain now lattice energy values, predict the solubility of ionic comp	, together with other data, can be used to pounds. (3)
	(5)
	but scientists predict that MgCl ₃ cannot be
made. Suggest a reason for this.You should consider the enthalpy change	ges in the Born-Haber cycle, which provide
made. Suggest a reason for this.You should consider the enthalpy change	ges in the Born-Haber cycle, which provide e is known but magnesium(III) chloride is not.
made. Suggest a reason for this.You should consider the enthalpy change	ges in the Born-Haber cycle, which provide
made. Suggest a reason for this.You should consider the enthalpy change	ges in the Born-Haber cycle, which provide e is known but magnesium(III) chloride is not.
made. Suggest a reason for this.You should consider the enthalpy change	ges in the Born-Haber cycle, which provide e is known but magnesium(III) chloride is not.
made. Suggest a reason for this.You should consider the enthalpy change	ges in the Born-Haber cycle, which provide e is known but magnesium(III) chloride is not.
made. Suggest a reason for this.You should consider the enthalpy change	ges in the Born-Haber cycle, which provide e is known but magnesium(III) chloride is not.
made. Suggest a reason for this.You should consider the enthalpy change	ges in the Born-Haber cycle, which provide e is known but magnesium(III) chloride is not.
made. Suggest a reason for this.You should consider the enthalpy change	ges in the Born-Haber cycle, which provide e is known but magnesium(III) chloride is not.
made. Suggest a reason for this.You should consider the enthalpy change	ges in the Born-Haber cycle, which provide e is known but magnesium(III) chloride is not. (2) (Total for Question 21 = 20 marks)
made. Suggest a reason for this.You should consider the enthalpy change	ges in the Born-Haber cycle, which provide e is known but magnesium(III) chloride is not. (2)

|____

0 (8) (18)	4.0 H e ^{helium}	20.2 Ne neon 10	39.9 Ar argon 18	83.8 Kr	кгурцон 36	131.3	Xenon 54	[222]	Rn 86	ed	
~	(17)	19.0 F fluorine 9	35.5 Cl chlorine 17	79.9 Br	35 35	126.9	l iodine 53	[210]	At astatine 85	Elements with atomic numbers 112-116 have been reported but not fully authenticated	175 Lu lutetium 71 [257] Lr lawrencium 103
ø	(16)	16.0 O oxygen 8	32.1 S sulfur 16	79.0 Se	setenium 34	127.6	Te tellurium 52	[209]	Po polonium 84	116 have b nticated	173 Yb 70 70 [254] No 102
2	(15)	14.0 N nitrogen 7	31.0 P phosphorus 15		arsenic 33	121.8	Sb antimony 51	209.0	Bi ^{bismuth} 83	tomic numbers 112-116 hav but not fully authenticated	169 Tm thulium 69 [256] Md mendelevium 101
4	(14)	12.0 C carbon 6	sil 2	72.6 Ge	germannum 32	118.7	5 0 tin 50 tin	207.2	Pb ^{lead} 82	atomic nu but not f	167 Er erbium 68 [253] Fm fermium 100
ĸ	(13)	10.8 B boron 5	27.0 Al aluminium 13	69.7 Ga	gaunum 31	114.8	indium 49	204.4	TI thallium 81	nents with	163 165 163 165 Dy Ho dysprosium hotmium 66 67 67 Es Cf Es 98 99
ients			(12)	65.4 Zn	zinc 30	112.4	Cd cadmium 48	200.6	Hg ^{mercury} 80		163 Dy dysprosium 66 [251] Cf catifornium 98
Elem			(11)	63.5 Cu	copper 29		Ag silver 47	197.0	Bold 79	[272] Rg roentgenium 111	159 Tb terbium 65 [245] Bk berkelium 97
le or			(10)	58.7 Ni	nickel 28	106.4	Pd palladium 46	195.1	Pt _{platinum} 78	[271] DS Jamstadtium 110	157 Gd gadolinium 64 [247] Cm 96
c lad	6)				cobalt 27	102.9	Rh rhodium 45	192.2	Ir iridium 77	[268] Mt meitnerium 109	152 Eu europium 63 [243] Am americium 95
I ne Periodic Tadie of Elements	hydrogen		(8)		1ron 26	101.1	Ru ruthenium 44	190.2	Os osmium 76	[277] HS hassium 108	[147] 150 152 Pm Sm Eu promethium samarium europium 61 62 63 737] [242] [243] Np Pu Am neptunium plutonium americium 93 94 95
а ап		54.9 Mn	chromium manganese 24 25	[86]	Mo TC molybdenum 42 43	186.2	Re rhenium 75	[264] Bh bohrium 107	[147] Pm promethium 61 [237] Np neptunium 93		
=	Key	relative atomic mass atomic symbol ^{name} atomic (proton) number	(9)	52.0 Cr	chromium 24	95.9	MO molybdenum 42	183.8	tungsten 74	[266] Sg seaborgium 106	141 144 Pr Nd prasedomium neodymium 59 60 [231] 238 Pa U protactinium urranium 91 92
			(5)	50.9 	vanadium 23	92.9	Nb niobium 41	180.9	Ta tantalum 73	[262] Db dubnium 105	141 Pr 59 [231] Pa protactinium 91
			(4)	47.9 Ti	titanium 22	91.2	Zr zirconium 40	178.5	Hf hafnium 72	[261] Rf rutherfordium 104	140 Cerium 58 232 232 thorium 90
			(3)	45.0 Sc	scandium 21	88.9	yttrium 39	138.9	La* lanthanum 57	[227] AC* actinium 89	<i>к</i>
7	(2)	9.0 Be berytlium 4	24.3 Mg magnesium 12	Ca	calcium 20	87.6	Sr strontium 38	137.3	Ba barium 56	[226] Ra radium 88	* Lanthanide series * Actinide series
-	(1)	6.9 Li lithium 3	23.0 Na sodium 11	39.1 X	potassium 19	85.5	Rb rubidium 37	132.9	CS caesium 55	[223] Fr francium 87	* Lanth * Actini

