4751 (C1) Introduction to Advanced Mathematics

Section A

1	(0, 14) and (14/4, 0) o.e. isw	4	M2 for evidence of correct use of gradient with $(2, 6)$ eg sketch with 'stepping' or $y - 6 = -4(x - 2)$ seen or $y = -4x + 14$ o.e. or M1 for $y = -4x + c$ [accept any letter or number] and M1 for $6 = -4 \times 2 + c$; A1 for $(0, 14)$ [$c = 14$ is not sufficient for A1] and A1 for $(14/4, 0)$ o.e.; allow when $x = 0$, $y = 14$ etc isw	4
2	$[a =] \frac{2(s - ut)}{t^2} \text{ o.e. as final answer}$ $[\text{condone } [a =] \frac{(s - ut)}{0.5t^2}]$	3	M1 for each of 3 complete correct steps, ft from previous error if equivalent difficulty [eg dividing by t does not count as step – needs to be by t^2] $[a=] \frac{(s-ut)}{\frac{1}{2}t^2} \text{ gets M2 only (similarly other triple-deckers)}$	3
3	10 www	3	M1 for $f(3) = 1$ soi and A1 for $31 - 3k = 1$ or $27 - 3k = -3$ o.e. [a correct 3-term or 2-term equation] long division used: M1 for reaching $(9 - k)x + 4$ in working and A1 for $4 + 3(9 - k) = 1$ o.e. equating coeffts method: M2 for $(x - 3)(x^2 + 3x - 1)$ [+ 1] o.e. (from inspection or division)	3
4	x < 0 or $x > 6$ (both required)	2	B1 each; if B0 then M1 for 0 and 6 identified;	2
5	(i) 10 www	2	M1 for $\frac{5 \times 4 \times 3}{3 \times 2(\times 1)}$ or $\frac{5 \times 4}{2(\times 1)}$ or for 1 5 10 10 5 1 seen	
	(ii) 80 www or ft 8 × their (i)	2	B2 for 80x ³ ; M1 for 2 ³ or (2x) ³ seen	4 16

6	any general attempt at <i>n</i> being odd and <i>n</i> being even even	M1	M0 for just trying numbers, even if some odd, some even	
	n odd implies n^3 odd and odd – odd = even	A1	or $n(n^2 - 1)$ used with n odd implies $n^2 - 1$ even and odd \times even = even etc [allow even \times odd = even]	
	n even implies n³ even and even – even = even	A1	or A2 for $n(n-1)(n+1)$ = product of 3 consecutive integers; at least one even so product even; odd ³ – odd = odd etc is not sufft for A1	
			SC1 for complete general method for only one of odd or even eg $n = 2m$ leading to $2(4m^3 - m)$	3
7	(i) 1	2	B1 for 5° or for 25 × 1/25 o.e.	
	(ii) 1000	1		3
8	(i) 2/3 www	2	M1 for 4/6 or for $\sqrt{48} = 2\sqrt{12}$ or $4\sqrt{3}$ or	
			$\sqrt{27} = 3\sqrt{3}$ or $\sqrt{108} = 3\sqrt{12}$ or for $\sqrt{\frac{4}{9}}$	
	(ii) $43 - 30\sqrt{2}$ www as final	3	M2 for 3 terms correct of 25 - 15 $\sqrt{2}$ -	5
	answer		$15\sqrt{2}$ + 18 soi, M1 for 2 terms correct	3
9	(i) $(x+3)^2-4$	3	B1 for $a = 3$, B2 for $b = -4$ or M1 for $5 - 3^2$ soi	
	(ii) ft their (-a, b);	2	B1 each coord.; allow $x = -3$, $y = -4$; or	
	if error in (i), accept (-3, -4) if evidence of being independently obtained		M1 for $\begin{bmatrix} -3 \\ -4 \end{bmatrix}$ o.e. oe for sketch with -3	
			and -4 marked on axes but no coords given	5
10	$(x^2 - 9)(x^2 + 4)$	M2	or correct use of quad formula or comp sq reaching 9 and -4; allow M1 for attempt with correct eqn at factorising with factors giving two terms correct, or sign error, or attempt at formula or comp sq [no more than two errors in formula/substn]; for this first M2 or M1 allow use of y etc or of x instead of x²	
	$x^2 = 9$ [or -4] or ft for integers /fractions if first M1 earned $x = \pm 3$ cao	M1 A1	must have x^2 ; or M1 for $(x + 3)(x - 3)$; this M1 may be implied by $x = \pm 3$ A0 if extra roots if M0 then allow SC1 for use of factor theorem to obtain both 3 and -3 as roots or $(x + 3)$ and $(x - 3)$ found as factors and SC2 for $x^2 + 4$ found as other factor using factor theorem [ie max SC3]	4
				20

Section B

				•	
11	i	y = 3x	2	M1 for grad AB = $\frac{1-3}{6}$ or $-1/3$ o.e.	2
	ii	eqn AB is $y = -1/3 x + 3$ o.e. or ft	M1	need not be simplified; no ft from midpt used in (i); may be seen in (i) but do not give mark unless used in (ii)	
		3x = -1/3x + 3 or ft x = 9/10 or 0.9 o.e. cao	M1 A1	eliminating x or y, ft their eqns if find y first, cao for y then ft for x	
		$y = 27/10$ oe ft their $3 \times$ their x	A1	ft dep on both Ms earned	4
	iii	$\left(\frac{9}{10}\right)^2 \left(1+3^2\right)$ o.e and completion to given answer	2	or square root of this; M1 for $\left(\frac{9}{10}\right)^2 + \left(\frac{27}{10}\right)^2 \text{ or } 0.81 + 7.29 \text{ soi or ft}$ their coords (inc midpt) or M1 for distance = $3 \cos \theta$ and $\tan \theta = 3$ and M1 for showing	
				$\sin \theta = \frac{3}{\sqrt{10}}$ and completion	2
	iv	$2\sqrt{10}$	2	M1 for $6^2 + 2^2$ or 40 or square roots of these	2
	v	9 www or ft their $a\sqrt{10}$	2	M1 for ½ × 3 × 6 or	
				$\frac{1}{2}$ × their $2\sqrt{10}$ × $\frac{9}{10}$ $\sqrt{10}$	2
					12

				1	, .
12	iA	expansion of one pair of brackets	M1	eg $[(x+1)](x^2-6x+8)$; need not be simplified	
		correct 6 term expansion	M1	$eg x^3 - 6x^2 + 8x + x^2 - 6x + 8;$	
				or M2 for correct 8 term expansion: $x^3 - 4x^2 + x^2 - 2x^2 + 8x - 4x - 2x + 4x - 6$	
				8, M1 if one error	
				allow equivalent marks working	
				backwards to factorisation, by long division or factor theorem etc	
				or M1 for all three roots checked by	
				factor theorem and M1 for comparing coeffts of x^3	2
	iB	cubic the correct way up x-axis: −1, 2, 4 shown	G1 G1	with two tps and extending beyond the axes at 'ends'	
		y-axis 8 shown	G1	ignore a second graph which is a	
				translation of the correct graph	3
	iC	[y=](x-2)(x-5)(x-7) isw or	2	M1 if one slip or for $[y =] f(x - 3)$ or	
		$(x-3)^3 - 5(x-3)^2 + 2(x-3) + 8$ isw or $x^3 - 14x^2 + 59x - 70$		for roots identified at 2, 5, 7 or for translation 3 to the left allow	
		low of X TTX T GGX TG		M1 for complete attempt: $(x + 4)(x +$	
				1)(x - 1) isw or (x + 3) ³ - 5(x + 3) ² + 2(x + 3) + 8 isw	
		(0, -70) or $y = -70$	1	allow 1 for $(0, -4)$ or $y = -4$ after $f(x + 3)$ used	3
	ii	27 - 45 + 6 + 8 = -4 or 27 - 45 +	B1	or correct long division of $x^3 - 5x^2 +$	
		6 + 12 = 0		2x + 12 by $(x - 3)$ with no remainder or of $x^3 - 5x^2 + 2x + 8$ with rem -4	
		long division of $f(x)$ or their $f(x) + 4$	M1	or inspection with two terms correct	
		$3x^2$ in working		eg (x = 3)(x4)	
		$x^2 - 2x - 4$ obtained	A1		
		$2+\sqrt{(-2)^2-4\times(-4)}$		dep on previous M1 earned; for	
		$\left[[x=] \frac{2 \div \gamma(-2)}{2} - 4 \wedge (-4) \right] $ or	M1		
		$(x-1)^2=5$			
		$2\pm\sqrt{20}$	A1		
		$\frac{1}{2}$ o.e. isw or $1\pm\sqrt{5}$			
					5 13
	ii	$27 - 45 + 6 + 8 = -4 \text{ or } 27 - 45 + 6 + 12 = 0$ long division of f(x) or their f(x) + 4 by (x - 3) attempted as far as $x^3 - 3x^2$ in working	B1 M1 A1 M1	+ 3) used or correct long division of $x^3 - 5x^2 + 2x + 12$ by $(x - 3)$ with no remainder or of $x^3 - 5x^2 + 2x + 8$ with rem -4 or inspection with two terms correct eg $(x - 3)(x^2 - 2x + 8)$	

40	T :	(F 0)	4		
13	i	(5, 2) $\sqrt{20}$ or $2\sqrt{5}$	1	0 for $\pm\sqrt{20}$ etc	2
	ii	no, since $\sqrt{20}$ < 5 or showing roots of $y^2 - 4y + 9 = 0$ o.e. are not real	2	or ft from their centre and radius M1 for attempt (no and mentioning $\sqrt{20}$ or 5) or sketch or solving by formula or comp sq $(-5)^2 + (y-2)^2 = 20$ [condone one error]	
	iii	y = 2x - 8 or simplified alternative	2	or SC1 for fully comparing distance from x axis with radius and saying yes M1 for $y - 2 = 2(x - 5)$ or ft from (i) or M1 for $y = 2x + c$ and subst their	2
	iv	$(x-5)^2 + (2x)^2 = 20$ o.e.	M1	(i) or M1 for ans $y = 2x + k$, $k \ne 0$ or -8 subst $2x + 2$ for y [oe for x]	2
		$5x^2 - 10x + 5[= 0]$ or better equiv.	M1	expanding brackets and rearranging	
		obtaining $x = 1$ (with no other roots) or showing roots equal	M1	to 0; condone one error; dep on first M1	
		one intersection [so tangent]	A1	o.e.; must be explicit; or showing line joining (1,4) to centre is perp to $y = 2x + 2$	
		(1, 4) cao	A1	allow $y = 4$	
		alt method $y-2=-\frac{1}{2}(x-5)$ o.e. $2x+2-2=-\frac{1}{2}(x-5)$ o.e. x=1 y=4 cao	M1 M1 A1 A1	line through centre perp to $y = 2x + 2$ dep; subst to find into with $y = 2x + 2$	
		showing (1, 4) is on circle	B1	by subst in circle eqn or finding dist from centre = $\sqrt{20}$ [a similar method earns first M1 for eqn of diameter, 2nd M1 for intn of diameter and circle A1 each for x and y coords and last B1 for showing (1, 4) on line – award onlyA1 if (1, 4) and (9, 0) found without (1, 4) being	
		alt method perp dist between $y = 2x - 8$ and $y = 2x + 2 = 10 \cos \theta$ where $\tan \theta = 2$	M1	identified as the soln]	
		showing this is $\sqrt{20}$ so tgt	M1		
		$x = 5 - \sqrt{20} \sin \theta$ $x = 1$	M1 A1 A1	or other valid method for obtaining x	5
		(1, 4) cao		allow <i>y</i> = 4	11