

GCE

Physics B (Advancing Physics)

Advanced GCE

Unit G495: Field and Particle Pictures

Mark Scheme for January 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2012

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

Annotations available in Scoris

Annotation	Meaning
-100	Benefit of Doubt given
[H-1]	Contradiction
×	Incorrect Response
1-0-1	Error Carried Forward
	Follow through
NAG	Not answered question
	Benefit of doubt not given
POT	Power of 10 error
	Omission Mark
	Rounding Error
	Error in number of Significant figures
✓	Correct Response
	Arithmetic error
?	Wrong physics equation

Annotations in detailed mark scheme

Annotation	Meaning
1	alternative and acceptable answers for the same marking point
(1)	Separates marking points
reject	Answers which are not worthy of credit
not	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
	Underlined words must be present in answer to score a mark
ecf	Error carried forward
AW	Alternative Wording
ORA	Or reverse argument

Q	uestion	Answer	Marks	Guidance
1	(a)	Wb m ⁻²	1	
	(b)	J C ⁻¹	1	
	(0)	Wb s ⁻¹	1	
2	(2)	$E = m^2 \sqrt{2} / 2m$ shown	1	Alley any consistent method
2	(a)	$E = m \sqrt{2m} \text{ shown}$	1	Allow: any consistent method Allow: reverse argument
	(b)	$E_k = h^2/2m\lambda^2$ shown	1	Allow: neverse argument
	(0)	$L_k = \Pi / 2 \Pi / \lambda$ Shown		Allow: reverse argument
	(C)	wavelength = $3.5 \times 10^{-10} \text{ m}$	1	
	(0)			
3	(a)	С	1	
	(b)	A	1	
4		$E = 3000/4 \times 10^{-4} = 7.5 \times 10^{6} (V m^{-1})$	1	
5		0	2	
Ŭ		$\int_{1}^{0} X$	-	Allow: beta-plus
				Allow: ecf from incorrect numbers
		positron/anti-electron (1)		Allow: positron etc as independent mark
6		Curving upwards between plates,	1	
		straight (by eye) outside plates	1	Use Scoris marking tool if in doubt.
7	(a)	Same/ equal Φ	1	Allow: AW
	(b)	Half, B/2	1	Allow: Y is twice X
		4 1 1 400.04		Not: less
8		$35 = 125 \times e^{-4.1 \times 10^{-9t}}$	1	Allow: 1.84 half lives (1) so 9.7 years(1)
		$\ln 35/125 = -4.1 \times 10^{-9} t$		Allow: Approx two half lives (1) so 10.6 years (1)
		$t = 3.1 \times 10^8 \text{ s} (= 9.7 \text{ years})$	1	Allow: Substitution (1) leading to 33.7kBq (1) after ten years
9	(0)	C	1	Own value needed for second mark
Э	(a) (b)	$r = 7 \times 10^{-15} \times 4^{0.33} / 197^{0.33}$	1	Or: $r_0 = 1.2 \times 10^{-15} m (1)$
		$= 7 \times 10^{-15} \times 0.27$		
		$r = 1.9 \times 10^{-15} m$	1	Need own value
		Total	20	

Q	uesti	on	Answer	Marks	Guidance	
10	(a)		Complete loop within iron	1		
			Loop will shorten when coil moves anticlockwise	1	Allow: straighten, AW	
					Ignore: reference to N and S attracting	
	(b)	(i)	Iron has high (relative) permeability	1	Not: permeance	
					Allow: iron is a good conductor <u>of flux</u>	
			Curved poles decrease air gap	1	Allow: curved faces provide for constant force/torque on rotor	
			Flux is therefore increased	1	Allow: flux density/field strength increases	
		(ii)	Laminations limit/ reduce eddy currents	1		
			Eddy currents oppose (existing) flux	1	Not: just eddy currents reduce flux Not: flux reduction as a consequence of eddy current heating Allow: eddy currents set up opposing flux	
	(C)		Rate of change of flux (linkage) increases	1	Allow: rate of cutting flux increases	
			so induced emf increases	1	Allow: answers in terms of back emf that demonstrate clear	
			in opposition to current (from supply)	1	understanding of cause.	
			Total	10		

Q	uestio	on	Answer	Marks	Guidance
11	(a)		Radial field		Allow: any four correct lines
			Arrows pointing outwards	1	
	(b)		$V = 9 \times 10^9 \times 2.5 \times 10^{-9}/4 \times 10^{-3}$	1	
			= 5625 V	1	Need own value
	(C)	(i)	Taking pairs of points, multiply x and y value values will be constant	1 1	 Allow: replot data as V against 1/r (1) and showing straight line through origin (1) Allow: V halves as r doubles (1) for more than one pair of points (1) Not: V decreases as r increases Not: replot y against 1/x
		(ii)	E = V/r = 2800/0.0080 = 350 x 10 ³ NC ⁻¹	1	Method must clearly relate to radial field Or: gradient of graph at 0.0080m (1) calculation to value in range 300 to 400 kNC ⁻¹ (1) Not: E = V/d (0 marks)
	(d)		Charges will migrate towards outer edges of sphere increasing distance between the centres of charge	1	
			Total	10	

Q	uestic	on	Answer	Marks	Guidance
12	(a)		anti-(electron) neutrino	1	
	(b)	i	change of mass = $1.42 \times 10^{-3} u$ = $2.36 \times 10^{-30} kg$ Energy release = $2.12 \times 10^{-13} J$ = $1.33 Mev$	1 1 1 1	Allow: ecf from any stage to next
		(ii)	(Kinetic) energy taken away by (anti) neutrino	1	Allow: ecf for particle name only Not: energy to create antineutrino Not: heat/light (any mention = 0 marks)
	(c)	(i)	activity = 0.693 x 2.2 x 10 ²⁰ /4.2 x 10 ¹⁶ = 3.6 kBq	1	Or: $\lambda = 1.65 \times 10^{-17}$ (1) Must have own answer Allow: 3.7kBq
		(ii)	dose = $3600 \times 7 \times 10^{-14} \times 3.2 \times 10^{7}/60$ = 1.3×10^{-4} Gy Assumptions clearly stated e.g. All beta particles/energy absorbed by body; no other beta emitters present; level of potassium in body remains constant	1 1 1	Allow: 1.3 to 1.5 x 10 ⁻⁴ Gy Not: constant rate of decay
		(iii)	risk = 1.3 x 10 ⁻⁴ x 0.03 x 50 x 40 x 10 ⁶	1	Allow: 7800 to 9000 Allow: ecf from (c) (ii)
			= 8100	1	POT error 1 max
			Total	13	

Q	Question		Answer		Guidance
13	(a)	(i)	To stop collisions (taking energy away from protons)	1	Allow: AW
	(b)	(ii)	Force on protons from B -field is at right angles to their direction of motion $400 \times 1.6 \times 10^{-19} \times 150$ = 9.6 x 10 ⁻¹⁵ J	1 1 1	Method mark
	(C)		r = $(2 \times 1.7 \times 10^{-27} \times 9.6 \times 10^{-15})^{1/2} / (0.8 \times 1.6 \times 10^{-19})$ = 0.045 m	1	Allow: 0.04 Not: 0.040 or 0.05 (rounding errors)
	(d)		 Any three from: Gamma factor = (rest energy + kinetic energy)/rest energy Kinetic energy of both particles the same but the proton rest energy is much greater so gamma factor is larger for electron Calculation of gamma factors: electron = 1.12 Calculation of gamma factors: proton = 1.00 Larger gamma factor for electron means more relativistic behaviour 	3	 Allow: Electron faster for same KE (1) Gamma factor is larger explained using formula (1) First marking point can be implicit in correct calculations Last marking point dependent on previous argument
			Total	9	

Q	uestion	Answer	Marks	Guidance
14	(a)	Use of distance = (150/60) x 400 = 1000 m.	1	Method mark. Allow: reverse argument
	(b)	speed is not constant (1)	1	
		One from: because it accelerates at the start (1) because buoyancy not constant (1) because drag varies (1) because density of atmosphere varies (1) because of vertical component of wind (1)	1	Allow: other reasonable answers Not: variation of g with altitude Not: just wind
		OR: difficult to spot the exact moment of disappearance (1) AW because clouds are diffuse (1) AW		
	(c)	Use of pV/T = constant Giving V = 0.033 m ³	1 1	Or: correct use of pV = nRT or pV = NkT Allow: 0.0326 Not: 0.032, 0.034 Correct bald answer scores both marks
		Total	5	

Q	uestic	on	Answer	Marks	Guidance
15	(a)	(i) &	Any two pairs from	4	Reason must relate to the property
		(ii)	Low density (1) reduces mass/ weight (1)		Not: light for property but BOD for reason
			OR		
			Low stiffness/ low Young Modulus (1) Makes balloon flexible/easy to inflate (1)		Not: flexible for property but BOD for reason. Not: elastic
			OR		
			Strong/ sufficient breaking stress (1) Balloon must not burst too soon (1)		Not: to lift heavy loads
			OR		
			Tough/ Not brittle (1) Fabric must not tear/split too soon/when cold (1)		
	(b)		Use of circumference = π x D to establish increase in length = 6π or 18.8m	1	
			strain = x/L = 18.8 / 6.28 = 3 or 300%	1	Allow: (8 - 2)/2 = 3 for second mark only
	(C)		$V = 4/3 \pi r^3 = 4.19 m^3$	1	Allow: ecf from any stage to next
			m = ρ V = 5.03 kg B = 5.03 x 9.8 = 49.3 N	1	Allow: 49, 49.26 N
	(d)		Resultant force = $49.3 - (1.25 \times 9.8) = 37.0 \text{ N}$ a = F / m = 29.6 m s ⁻²	1	Not: 39.4ms ⁻² – 9.8ms ⁻² (0 marks) Allow: 30.2 from 50N, 29.4 from 49N

Mark Scheme

Question	Answer	Marks	Guidance
(e)	Examples:	3	
(e)	Examples: Balloon expands as it rises (1) so buoyancy increases (1) so larger acceleration (1) Balloon expands at it rises (1) so drag force increases (1) so drag force increases (1) so smaller acceleration (1) Air density decreases with altitude (1) so buoyancy decreases (1) so smaller acceleration (1) Air density decreases with altitude (1) so drag decreases (1) so larger acceleration (1) Balloon is accelerating (1) so drag force increases (1) so acceleration decreases (1) Colder with altitude (1) so volume/buoyancy reduces (1) so acceleration reduces (1) Atmospheric pressure decreases with altitude (1) so volume/buoyancy increases (1)	3	Allow: reasonable alternatives QWC: Poorly marshalled arguments cannot lead to more than 2 marks.
	so acceleration increases (1)		
	Total	14	

Q	uestic	on	Answer	Marks	Guidance
16	(a)		1100 m / 4352 pixels = 0.25 m / pixel	1	Allow: 0.253 Not: 0.252, 0.3
	(b)	(i)	8 bits required (per colour pixel) bits = $4352 \times 3264 \times 3 \times 8 = 3.4 \times 10^8$ bits	1 1	
		(ii)	3.4 x 10 ⁸ bits = 0.0426 G bytes (1) => 8 Gbytes / 0.0426 = 187.8, so 187 pictures (1) OR 8 Gbytes = 6.4×10^{10} bits (1) 6.4×10^{10} bits/3.4 x 10 ⁸ bits = 187.8 so 187 pictures (1)	2	Allow: ecf from (b)(i) Not: 188
			Total	5	

Q	uestion	Answer	Marks	Guidance
17	(a)	$v = (2E/m)^{\frac{1}{2}}$	1	Calculation in (M)eV = 0 marks
		$= 4.3 \times 10^7 \text{ m s}^{-1}$	1	POT error -1 e.g. 4.3×10^4 for missing M
	(b)	$v = d/t = 3.5 \times 10^3 / 0.13 \times 10^{-3} =$ 2.69 x 10 ⁸ ms ⁻¹	1	Allow: reverse argument
		Then, v/c = 2.69/3.0 = 0.897 i.e 90%	1	Needs own value or clear method
	(C)	$\gamma = 1/(1 - 0.897^2)^{-\frac{1}{2}}$ (=2.26 or 2.29)	1	Or: Recognition that $t = t'\gamma$ or $t' = t/\gamma$ (1)
		$t = 0.13 \times 10^{-3} / (1 - 0.897^2)^{-1/2}$	1	
		=> t = 5.7 x 10 ⁻⁵ s	1	
		Total	7	

Question		Answer	Marks	Guidance
18	(a)	$E = kT = h c / \lambda$	1	Or: E = kT = 3.8 x 10 ⁻²³ (1)
		$=> \lambda = h c / k T = 5.2 x 10^{-3} m$	1	Allow: use of 3kT/2 for full credit ($E = 5.7 \times 10^{-23}$, $\lambda = 3.5 \times 10^{-3}$)
	(b)	Range = 600 μK	1	
		Then, 600 μ K / 2.7 K = 2.2 x 10 ⁻⁴ = 0.022%	1	Need own value or clear working
	(C)	Reference to early universe	1	AW
		mass concentrations/density variation/coalescence of matter/gravity variation	1	
		formation of galaxies	1	Allow: stars
				QWC: three marks only awarded if answer is carefully ordered and clear
		Total	7	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

