Please check the examination details be	ow before entering your candidate information				
Candidate surname	Other names				
Pearson Edexcel	Atre Number Candidate Number				
Wednesday 9 January 2019					
Morning (Time: 2 hours)	Paper Reference 4CH0/1C 4SC0/1C				
Chemistry Unit: 4CH0 Science (Double Award) 4 Paper: 1C	SCO				
You must have: Calculator, ruler	Total Marks				

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.
- Show all the steps in any calculations and state the units.
- Some questions must be answered with a cross in a box ⊠. If you change your mind about an answer, put a line through the box ₩ and then mark your new answer with a cross ⊠.

Information

- The total mark for this paper is 120.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

Littlinium Kittinium Market Southern Market So	Radium Strongrim S	AC Actinum 89 89 89 89 89 89 89 89 89 89 89 80 80 80 80 80 80 80 80 80 80 80 80 80	Titanium Titanium 22 22 22 23 23 179 179 179 179 179	Vanadium Vanadium 181 131 73 73	Chromium 86 74 74 74 74	Group Group Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen 1 Hydrogen 1 Hydrogen 1 Hydrogen Hyd	Se Construction of the second	1.1 1.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2	Patient 28 28 28 28 28 28 28 28 28 28 28 28 28	AU 41 79 40 79 41 79 71 79 71 70	Mercury Bo UT Bo O	3 4 Auminium Boron 1 3 1 13 3 1 13 1	A A Ni 82 50 51 14 82 32 33 33 82 50 50 14	83 Bi Bi SS 5 1 12 12 12 12 12 12 12 12 12 12 12 12 1	6 8 8 8 8 8 8 8 8 8 8 8 8 8	At Astatine 53 Bramine 53 Bramine 53 Bramine 53 Statine 53 Statin 53 Statine 53 Statine 53 Statine 53 Statine 53 Statine	Helium Helium 36 86 86 86 86 86 86 86 86 86 86 86 86 86
					L	Relative atomic mass Symbol Name Atomic number	22 26										

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

P 5 5 7 1 4 A 0 2 2 8

2

THE PERIODIC TABLE

Answer ALL questions.

- 1 The three states of matter are solid, liquid and gas.
 - (a) Substances can be changed from one state to another.

The box lists some words relating to changes of state.

condensing	cooling	evaporation
heating	melting	sublimation

Complete the table by giving the correct word from the box for each change of state.

Each word may be used once, more than once, or not at all.

(3)

Change of state	Name of change
from solid to liquid	
from liquid to gas	
from solid to gas	

(b) The particles in a solid are closely packed, arranged in a regular pattern and vibrate about a fixed position.

Describe the arrangement and movement of the particles in a gas.

(3)

(Total for Question 1 = 6 marks)

3

- DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA
- (2) (1)

2 Rock salt is a mixture of the soluble salt, sodium chloride, and some insoluble impurities. The diagram shows the first three stages of a method used to obtain pure sodium chloride from rock salt. Stage 1 Stage 2 Stage 3 rock salt crushed crushed rock salt added to water (a) Name the pieces of apparatus labelled X, Y and Z (3) Χ..... Υ..... Ζ..... (b) (i) State why the mixture of rock salt and water is warmed and stirred in stage 2. (ii) What is water in stage 2? a residue Α a solute \mathbf{X} B **C** a solution X **D** a solvent \mathbf{X} 4

(C) (I) Ex	plain what happens to the impurities in stage 3.	(2)
(i	i) Wl	nat is the liquid collected at the end of stage 3?	
			(1)
(i		nat is the liquid collected at the end of stage 3? a residue	(1)
	A		(1)
×	A B	a residue	(1)
×	 A B C 	a residue a solute	(1)

5

1

3 Crude oil is a mixture of hydrocarbons.

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(a) The diagram shows a column used in the industrial process to separate crude oil.

D 5 5 7 1 4 A 0 7 2

(i) Explain which homologous series eicosane belongs to.	(2)
(ii) Name a catalyst used in the industrial cracking of eicosane.	(1)
(iii) In a possible reaction for the cracking of eicosane, the products are three molecules of C ₄ H ₈ and one molecule of another hydrocarbon.	
Complete the equation for this reaction.	(1)
$C_{20}H_{42} \rightarrow 3C_4H_8 + \dots$	
(c) Hydrocarbons can be saturated or unsaturated.	
(i) Explain what is meant by the term hydrocarbon .	(2)
(ii) State what is meant by a hydrocarbon being saturated.	
	(1)

P 5 5 7 1 4 A 0 8 2 8

(iii) Describe a chemical test used to distinguish between unsaturated and saturated hydrocarbons. (3) DO NOT WRITE IN THIS AREA test results (d) The unsaturated hydrocarbon C_4H_8 has several isomers. The displayed formula for one of these isomers is DO NOT WRITE IN THIS AREA ннн Н -()= Н Н Н (i) Name this isomer. (1) (ii) Draw the displayed formula of another isomer of C_4H_8 (1) DO NOT WRITE IN THIS AREA (Total for Question 3 = 15 marks) 9

P 5 5 7 1 4 A 0 9 2 8

	heant by the term cov a		(2)
(ii) Draw a dot and c	ross diagram to show	the bonding in a mole	cule of ethene, C ₂ H ₄
Show only the ou	uter electrons.		(2)
b) Substances A and B a	are covalently bonded	and have simple mole	cular structures.
	are covalently bonded poiling points for subst		cular structures.
		ances A and B. Boiling point	cular structures.
	poiling points for subst	ances A and B.	cular structures.
	ooiling points for subst	ances A and B. Boiling point in °C	cular structures.
	poiling points for subst	ances A and B. Boiling point in °C -42	cular structures.
	poiling points for subst	ances A and B. Boiling point in °C -42	cular structures.
	poiling points for subst	ances A and B. Boiling point in °C -42	cular structures.
o) Substances A and B a The table gives the b	poiling points for subst	ances A and B. Boiling point in °C -42	cular structures.
	poiling points for subst	ances A and B. Boiling point in °C -42	cular structures.

	It has a boiling point of 2230°C. Explain, in terms of its structure, why X has such a high boiling point.	(2)
(c)	Substance X is also covalently bonded, but its structure is different from that	of A and B.
	(iii) Substance B has the empirical formula C_2H_5 and an M_r value of 58. Determine the molecular formula of substance B.	(2)
	(ii) Suggest why the boiling point of B is higher than the boiling point of A.	(1)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS ARE

P 5 5 7 1 4 A 0 1 2 2 8

(ii) Name the method used in the diagram to collect the sulfur dioxide gas. (1) (iii) State the physical property of sulfur dioxide gas that allows it to be collected in this way. (1) (d) A sample of sulfur dioxide reacts with water to form an acidic solution. (i) Identify the acid formed. (1) (ii) A few drops of methyl orange indicator are added to this solution. State the colour of the indicator in this solution. (1) (iii) Give the formula of the ion responsible for this colour. (1) (iv) An alkali is then added to neutralise the acid. State the final colour of the indicator. (1)

(Total for Question 5 = 10 marks)

6 A student investigates the rate of the reaction between magnesium ribbon and dilute hydrochloric acid. The products are magnesium chloride and hydrogen.

(a) The equation for the reaction is

 $Mg(\dots) + 2HCl(\dots) \rightarrow MgCl_2(\dots) + H_2(\dots)$

Complete the equation by adding the state symbols.

(b) The student uses these pieces of apparatus in his experiment.

This is his method.

- clean a strip of magnesium ribbon to remove the oxide layer
- pour 50 cm³ of 0.5 mol/dm³ hydrochloric acid into the flask
- put the clean magnesium ribbon into the flask
- quickly put the bung into the flask to connect the gas syringe
- record the volume of gas in the syringe every minute for eight minutes

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(1)

SAREA	(i) Suggest why the student cleans the magnesium ribbon to remove the oxide	e layer. (1)
	(ii) Suggest why the student needs to put the bung into the flask quickly.	(1)
	(iii) Suggest when the student should start the stop watch.	(1)
2 C		
		1

P 5 5 7 1 4 A 0 1 6 2 8

	(iii) Suggest two possible reasons why the reaction stops.	(2)
1		
2		
	(iv) Explain when the rate of reaction is greatest.	(2)
(d)	Explain how increasing the concentration of the hydrochloric acid affects the rate of the reaction with magnesium.	
	Refer to the particle collision theory in your answer.	(4)
	(Total for Question 6 = 15 ma	rks)

17

- DO NOT WRITE IN THIS AREA DO NOT W
 - DO NOT WRITE IN THIS AREA DO
- DO NOT WRITE IN THIS AREA

- 7 In the Periodic Table, the vertical columns of elements are called groups.
 - (a) The table gives some information about the first four elements in Group 0.

Element	Relative atomic mass (A _,)	Boiling point in °C
helium	4	-269
neon	20	-246
argon	40	-186
krypton	84	-153

(i) State the relationship between the relative atomic mass and the boiling point of these elements.

(1)

(1)

- (ii) State why the elements in Group 0 are unreactive.
- (b) The elements in Group 7 of the Periodic Table are called halogens.
 - State why the halogens have similar chemical properties.

Refer to electronic configurations in your answer.

(1)

(c) The order of reactivity of the halogens can be shown by using displacement reactions. (i) When chlorine is added to sodium bromide solution, chlorine displaces bromine. Write a chemical equation for this reaction. (1) (ii) State the colour of the solution formed in this reaction. (1) (iii) Explain whether or not a reaction takes place when bromine water is added to sodium chloride solution. (2) (iv) The displacement reaction between potassium iodide and chlorine can be represented by the ionic equation $2l^- + Cl_2 \rightarrow l_2 + 2Cl^-$ Explain why this is described as a redox reaction. (2)

O NOT WRITE IN THIS AREA

(d) Chlorine reacts with hydrogen to form hydrogen chloride gas.	
(i) Write the chemical equation for this reaction.	(1)
(ii) Some methylbenzene is poured into beaker A.	
Some water is poured into beaker B.	
Hydrogen chloride gas is dissolved in each liquid.	
A separate piece of dry blue litmus paper is dipped into each solution	n.
A B hydrogen chloride dissolved in methylbenzene dissolved in water	
 Explain what happens to the piece of litmus paper dipped into beaker A the piece of litmus paper dipped into beaker B. 	(4)
beaker B	
(Total for Question 7	7 - 14 marks)

8 The table shows information about the effect of adding sodium hydroxide solution to solutions containing zinc ions, calcium ions or aluminium ions.

lon in solution	Effect of adding a few drops of sodium hydroxide solution	Effect of adding excess sodium hydroxide solution
zinc, Zn ²⁺	white precipitate forms	white precipitate disappears
calcium, Ca ²⁺	white precipitate forms	white precipitate remains
aluminium, Al ³⁺	white precipitate forms	white precipitate disappears

- (a) A student is provided with a sample of a white solid.
 - (i) The student dissolves some of the white solid in water and then adds a few drops of sodium hydroxide solution. A white precipitate forms.

She concludes that the sample contains calcium ions.

Explain whether the student's conclusion is valid.

(ii) Give a different test to show that the white solid contains calcium ions.

(2)

(2)

test
result

DO NOT WRITE IN THIS AREA

(b) A hydrated salt has the formula AB₂.xH₂O

A is a positive ion and B is a negative ion.

When the hydrated salt is heated, this reaction occurs.

 $AB_2 \cdot xH_2O \rightarrow AB_2 + xH_2O$

A scientist heats a sample of the hydrated salt until all the water has been lost.

She records the mass of the salt before and after heating.

The table shows her results.

Mass of hydrated salt	Mass of salt after heating
6.1 g	5.2 g

(i) Describe how the scientist could make sure that all the water has been lost.

(ii) Use the scientist's results to find the value of x in $AB_2.xH_2O$

 $[M_r \text{ of } AB_2 = 208 \qquad M_r \text{ of } H_2O = 18]$

(4)

x =

(2)

P 5 5 7 1 4 A 0 2 2 2 8

P 5 5 7 1 4 A 0 2 4 2 8

Explain how limestone removes the impurity silice (SiO) from the furnace
Explain how limestone removes the impurity, silica (SiO_2) , from the furnace.	
You may use equations to help your answer.	(3)
b) (i) State why aluminium cannot be produced by heating it	c oxido with carbon
b) (i) State why aluminum cannot be produced by heating it	(1)
(ii) Describe how aluminium is extracted from purified alu	ninium oxide. (4)
	(-)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

P 5 5 7 1 4 A 0 2 5 2 8

DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS ARE

10 A student does a titration to find the concentration of a solution of aqueous ammonia.

He uses this method.

- use a pipette to add 25.0 cm³ samples of the solution into a conical flask •
- add a few drops of indicator •
- add sulfuric acid from a burette until the indicator changes colour permanently •
- repeat the titration three more times •
- (a) (i) State what the student should do while adding the acid, to make sure that the indicator changes colour permanently.

(b) The table shows the titration results of another student.

		0	
oncentration of sulfuric acid in mol/dm ³	0.08		
verage volume of sulfuric acid added from burette in cm ³	22.7	0	
he equation for the reaction is			
$H_2SO_4 + 2NH_3 \rightarrow (NH_4)_2SO_4$			
i) Calculate the amount, in moles, of H_2SO_4 in 22.70 cm ³ of the su	ılfuric acid.	(2)	
amount of F	H ₂ SO ₄ =		m
ii) Calculate the amount, in moles, of $\mathrm{NH}_{_3}$ in the aqueous ammor	nia.		
		(1)	
amount of	f NH ₃ =		m
iii) Calculate the concentration, in mol/dm ³ , of the aqueous amm	onia.	(2)	
		(-)	
concentration of aqueous ammonia	=	mo	l/dn
			27

of ammonium	sulfate from a dilute solution of am	monium sulfate. (4)
		(**)/
		(Total for Question 10 = 13 marks)
		TOTAL FOR PAPER = 120 MARKS

P 5 5 7 1 4 A 0 2 8 2 8