4762 Mechanics 2

Q 1		Mark		Sub
(i)	either $m \times 2 u=5 F$ so $F=0.4 m u$ in direction of the velocity or $a=\frac{2 u}{5}$ so $F=0.4 m u$ in direction of the velocity	M1 A1 A1 M1 A1 A1	Use of $I=F t$ Must have reference to direction. Accept diagram. Use of suvat and N2L May be implied Must have reference to direction. Accept diagram.	3
(ii)	$\begin{aligned} & \text { PCLM } \rightarrow 2 u m+3 u m=m v_{P}+3 m v_{Q} \\ & \text { NEL } \rightarrow v_{Q}-v_{P}=2 u-u=u \\ & \text { Energy } \frac{1}{2} m \times(2 u)^{2}+\frac{1}{2}(3 m) \times u^{2} \\ & =\frac{1}{2} m \times v_{\mathrm{P}}^{2}+\frac{1}{2}(3 m) \times v_{Q}^{2} \end{aligned}$ Solving to get both velocities $\begin{aligned} & v_{Q}=\frac{3 u}{2} \\ & v_{P}=\frac{u}{2} \end{aligned}$	M1 A1 A1 M1 E1 A1	For 2 equns considering PCLM, NEL or Energy One correct equation Second correct equation Dep on $1^{\text {st }} \mathrm{M} 1$. Solving pair of equations. If Energy equation used, allow $2^{\text {nd }}$ root discarded without comment. [If AG subst in one equation to find other velocity, and no more, max SC3]	6
(iii)	either After collision with barrier $v_{\mathrm{Q}}=\frac{3 e u}{2} \leftarrow$ $\text { so } \rightarrow m \frac{u}{2}-3 m \frac{3 e u}{2}=-4 m \frac{u}{4}$ $\text { so } e=\frac{1}{3}$ At the barrier the impulse on Q is given by $\rightarrow 3 m\left(-\frac{3 u}{2} \times \frac{1}{3}-\frac{3 u}{2}\right)$ so impulse on Q is $-6 m u \rightarrow$ so impulse on the barrier is $6 m u \rightarrow$	B1 M1 A1 A1 A1 M1 F1 F1 A1	Accept no direction indicated PCLM LHS Allow sign errors. Allow use of $3 m v_{\mathrm{Q}}$. RHS Allow sign errors Impulse is $m(v-u)$ $\pm \frac{3 u}{2} \times \frac{1}{3}$ Allow \pm and direction not clear. FT only e. cao. Direction must be clear. Units not required.	9
		18		

Q 2		Mark		Sub
(i)	$\begin{aligned} & R=80 g \cos \theta \text { or } 784 \cos \theta \\ & F_{\max }=\mu R \\ & \text { so } 32 g \cos \theta \text { or } 313.6 \cos \theta \mathrm{~N} \end{aligned}$	B1 M1 A1	Seen	3
(ii)	Distance is $\frac{1.25}{\sin \theta}$ WD is $F_{\text {max }} d$ so $32 g \cos \theta \times \frac{1.25}{\sin \theta}$ $=\frac{392}{\tan \theta}$	B1 M1 E1	Award for this or equivalent seen	3
(iii)	\triangle GPE is $m g h$ so $80 \times 9.8 \times 1.25=980 \mathrm{~J}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Accept 100 g J	2
(iv)	either $P=F v$ so $(80 g \sin 35+32 g \cos 35) \times 1.5$ $=1059.85 \ldots \text { so } 1060 \mathrm{~W} \text { (3 s. f.) }$ or $\begin{aligned} & P=\frac{\mathrm{WD}}{\Delta t} \\ & \text { so } \frac{980+\frac{392}{\tan 35}}{\left(\frac{1.25}{\sin 35}\right) \div 1.5} \\ & =1059.85 \ldots \text { so } 1060 \mathrm{~W} \text { (3 s. f.) } \end{aligned}$	M1 B1 A1 A1 M1 B1 B1 A1	Weight term All correct cao Numerator FT their GPE Denominator cao	
(v)	either Using the W-E equation $0.5 \times 80 \times v^{2}-0.5 \times 80 \times\left(\frac{1}{2}\right)^{2}=980-\frac{392}{\tan 35}$ $v=3.2793 \text {.. so yes }$ or N2L down slope $a=2.409973 \ldots$ distance slid, using uvast is $1.815372 \ldots$ vertical distance is $1.815372 \ldots \times \sin 35$ $=1.0412 \ldots<1.25$ so yes	M1 B1 B1 A1 A1 M1 A1 A1 M1 A1	Attempt speed at ground or dist to reach required speed. Allow only init KE omitted KE terms. Allow sign errors. FT from (iv). Both WD against friction and GPE terms. Allow sign errors. FT from parts above. All correct CWO All forces present valid comparison CWO	
		17		

Q 3		Mark		Sub
(i)	$\begin{aligned} & \bar{y}: \quad 250 \times 4+125\left(8+\frac{30}{2} \cos \alpha\right)=375 \bar{y} \\ & \bar{y}=\frac{28}{3}=9 \frac{1}{3} \\ & \bar{z}: \quad(250 \times 0+) 125 \times \frac{30}{2} \sin \alpha=375 \bar{z} \\ & \bar{z}=3 \end{aligned}$	M1 B1 M1 B1 B1 E1 B1 E1	Correct method for \bar{y} or \bar{z} Total mass correct $15 \cos \alpha$ or $15 \sin \alpha$ attempted either part $\begin{aligned} & \left(8+\frac{30}{2} \cos \alpha\right) \\ & 250 \times 4 \end{aligned}$ Accept any form LHS	
(ii)	Yes. Take moments about CD. c.w moment from weight; no a.c moment from table	E1 E1	[Award E1 for $9 \frac{1}{3}>8$ seen or 'the line of action of the weight is outside the base]	2
(iii)	c.m. new part is at $(0,8+20,15)$ $\begin{aligned} & 375 \times \frac{28}{3}+125 \times 28=500 \bar{y} \text { so } \bar{y}=14 \\ & 375 \times 3+125 \times 15=500 \bar{z} \text { so } \bar{z}=6 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { E1 } \\ & \text { E1 } \end{aligned}$	Either y or z coordinate correct Attempt to 'add' to (i) or start again. Allow mass error.	4
(iv)	Diagram $\begin{aligned} & \text { Angle is } \arctan \frac{6}{14} \\ & =23.1985 \ldots \text { so } 23.2^{\circ}(3 \mathrm{s.f.} .) \end{aligned}$	B1 B1 M1 A1	Roughly correct diagram Angle identified (may be implied) Use of tan. Allow use of $14 / 6$ or equivalent. cao	4
		18		

Q 4		mark		sub
(a) (i)	Let the \uparrow forces at P and Q be R_{P} and R_{Q} c.w. moments about P $2 \times 600-3 R_{Q}=0$ so force of $400 \mathrm{~N} \uparrow$ at Q a.c. moments about Q or resolve $R_{\mathrm{P}}=200$ so force of $200 \mathrm{~N} \uparrow$ at P	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Moments taken about a named point.	4
(ii)	$R_{\mathrm{P}}=0$ c.w. moments about Q $2 L-1 \times 600=0 \text { so } L=300$	B1 M1 A1	Clearly recognised or used. Moments attempted with all forces. Dep on $R_{\mathrm{P}}=0$ or R_{p} not evaluated.	3
(b) (i)	$\cos \alpha=15 / 17 \text { or } \sin \alpha=8 / 17 \text { or } \tan \alpha=8 / 15$ c.w moments about A $\begin{aligned} & 16 \times 340 \cos \alpha-8 R=0 \\ & \text { so } R=600 \end{aligned}$	B1 M1 A1 E1	Seen here or below or implied by use. Moments. All forces must be present and appropriate resolution attempted. Evidence of evaluation.	4
(ii)	Diagram (Solution below assumes all internal forces set as tensions)	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Must have 600 (or R) and 340 N and reactions at A. All internal forces clearly marked as tension or thrust. Allow mixture. [Max of B1 if extra forces present]	2
(iii)	B $\downarrow 340 \cos \alpha+T_{\mathrm{BC}} \cos \alpha=0$ so $T_{\mathrm{BC}}=-340$ (Thrust of) 340 N in BC $\mathrm{C} \rightarrow T_{\mathrm{BC}} \sin \alpha-T_{\mathrm{AC}} \sin \alpha=0$ so $T_{\mathrm{AC}}=-340$ (Thrust of) 340 N in AC $\mathrm{B} \leftarrow T_{\mathrm{AB}}+T_{\mathrm{BC}} \sin \alpha-340 \sin \alpha=0$ so $T_{\mathrm{AB}}=320$ (Tension of) 320 N in AB Tension/ Thrust all consistent with working	M1 A1 F1 M1 A1 F1	Equilibrium at a pin-joint Method for T_{AB} [Award a max of $4 / 6$ if working inconsistent with diagram]	6
		19		

