Write your name here		
Surname	Other n	ames
Edexcel GCE	Centre Number	Candidate Number
Chemistr Advanced Subsidia Unit 1: The Core Pr	ary	nistry
Friday 21 May 2010 – After Time: 1 hour 30 minute s		Paper Reference 6CH01/01
Candidates may use a calcu	lator.	Total Marks

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question.
- Questions labelled with an **asterisk** (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

edexcel advancing learning, changing lives

7/7/7/4/

BLANK PAGE

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box ⊠. If you change your mind, put a line through the box ≅ and then mark your new answer with a cross ⊠.

1 The equations below show some reactions of magnesium and its compounds.

		ne equations ceres si	to w some reactions of magnesiam and its compounds.	
	A	$2Mg(s) + O_2(g)$	$\rightarrow 2MgO(s)$	
	B	$Mg(NO_3)_2(s)$	\rightarrow MgO(s) + 2NO ₂ (g) + O ₂ (g)	
	C	MgO(s) + 2HCl(aq	$) \rightarrow MgCl_2(aq) + H_2O(1)$	
	D	$Mg(s) + CuSO_4(aq)$	$\rightarrow MgSO_4(aq) + Cu(s)$	
	(8) Which equation is r	not balanced?	(1)
	[A		(1)
	[B		
	[C		
	[3 D		
	(ł) Which equation can	be classified as a displacement reaction?	
	[A		(1)
		B		
	[C		
	[D		
			(Total for Question	1 = 2 marks)
	2 11			
	2 W	finch of these equatio	ns represents the electron affinity of chlorine?	
	[A $Cl_2(g) + 2e^$	$\rightarrow 2Cl^{-}(g)$	
	[B $Cl_2(g) - 2e^ $	$\rightarrow 2Cl^{-}(g)$	
	[C $\frac{1}{2}Cl_2(g) + e^ \frac{1}{2}cl_2(g) + \frac{1}{$	$\rightarrow Cl^{-}(g)$	
-1				

(Total for Question 2 = 1 mark)

 $\square \mathbf{D} \quad \mathrm{Cl}(\mathrm{g}) + \mathrm{e}^{-} \quad \rightarrow \mathrm{Cl}^{-}(\mathrm{g})$

(b) is a member of Group 3. (1) 🛛 A B **C** D 🛛 (c) is likely to be very unreactive. (1) A 🛛 **B C** D D (d) normally forms four covalent bonds per atom. (1) A B **C** D D (Total for Question 4 = 4 marks) 5 Which of these ions has the greatest ability to polarize an anion? \square A Ba²⁺ \blacksquare **B** Ca²⁺ \Box C Cs⁺ \square **D** K⁺ (Total for Question 5 = 1 mark)

6		of these electron density maps best represents the bonding in the compound niodide, LiI?
	A	
	B	
	C	
	D	δ^+
_		(Total for Question 6 = 1 mark)
7	Which	of these statements is incorrect ?
	A	The atomic radius of metals increases down a Group.
	B	The trend in the melting temperature of successive elements across Period 2 is similar to that in Period 3.
	C	A metallic structure is held together by attractions between metal atoms and delocalized electrons.
	D 🖾	Na^+ and O^{2-} ions are isoelectronic.
_		(Total for Question 7 = 1 mark)
8		ple of gas was prepared for use in helium-neon lasers. It contained 4 g of helium g of neon. What is the ratio of helium atoms to neon atoms in the sample?
	A	1:1
	B	2.5 : 1

9 The overall equation for the reaction between sulfur and oxygen to form sulfur trioxide is shown below.

 $2S(s) + 3O_2(g) \rightarrow 2SO_3(g)$

0.9 mol of $O_2(g)$ reacted completely with excess sulfur. What volume, in dm³, of sulfur trioxide would form?

[Assume the molar gas volume = $24 \text{ dm}^3 \text{ mol}^{-1}$]

 \square A (0.9 × 3/2) × 24

 \square **B** $(0.9 \times 3/2) \div 24$

 \Box C (0.9 × 2/3) × 24

 \square **D** $(0.9 \times 2/3) \div 24$

(Total for Question 9 = 1 mark)

10 Which of these solutions does not contain the same total number of ions as the others?

 \square A 10.00 cm³ of 0.100 mol dm⁻³ NaCl(aq)

 \square **B** 20.00 cm³ of 0.050 mol dm⁻³ NaCl(aq)

 \Box C 20.00 cm³ of 0.050 mol dm⁻³ MgCl₂(aq)

D 13.33 cm³ of 0.050 mol dm⁻³ MgCl₂(aq)

(Total for Question 10 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

(Total for	Question 14 = 3 marks)
\square D	
\square \square \square \square	
\square A \square B	
(c) Which equation shows a termination step?	(1)
\square D	
C C	
B	
(b) Which equation shows an initiation step?☑ A	(1)
(a) Which equation shows a propagation step?	(1)
D $\operatorname{Cl}_2(g) + \operatorname{CH}_4(g) \rightarrow \operatorname{CH}_3\operatorname{Cl}(g) + \operatorname{HCl}(g)$	
C $CH_3\bullet(g) + CH_3\bullet(g) \rightarrow C_2H_6(g)$	
B $\operatorname{Cl}_{\bullet}(g) + \operatorname{CH}_{4}(g) \rightarrow \operatorname{CH}_{3}_{\bullet}(g) + \operatorname{HCl}(g)$	
A $Cl_2(g) \rightarrow 2Cl \bullet(g)$	

SECTION B	
Answer ALL the questions. Write your answers in the spaces provided.	
uestion is about the properties of ions and ionic compounds.	
lid calcium carbonate, CaCO ₃ , has a giant ionic structure.	
Draw a diagram (using dots or crosses) for a calcium ion . Show ALL the electrons and the charge on the ion.	(2)
) Complete the electronic configuration for a calcium ion .	(1)
) Would you expect a calcium ion to be bigger, smaller or the same size as a calcium atom? Give TWO reasons to explain your answer.	(2)
) Explain why ionic compounds have relatively high melting temperatures.	(2)
	 Answer ALL the questions. Write your answers in the spaces provided. uestion is about the properties of ions and ionic compounds. lid calcium carbonate, CaCO₃, has a giant ionic structure. Draw a diagram (using dots or crosses) for a calcium ion. Show ALL the electrons and the charge on the ion.) Complete the electronic configuration for a calcium ion.) Would you expect a calcium ion to be bigger, smaller or the same size as a calcium atom? Give TWO reasons to explain your answer.

elec	inges in the concentration of ions in a solution can be estimated by measuring the trical conductivity of the solution.	e
(i)	Explain why solutions of ions are able to conduct electricity.	(1)
(ii)	Suggest why aqueous solutions of calcium chloride, CaCl ₂ (aq), and barium chloride, BaCl ₂ (aq), of the same molar concentration, have different electrical conductivities.	(1)
(iii)	 1 kg of a solution contains 0.100 mol of calcium ions, Ca²⁺. What is the concentration of the calcium ions by mass in parts per million (ppm)? [Assume the relative atomic mass of calcium is 40.] 	(2)
		pp

experimental Born-Haber cycle and	ide, $CaCl_2$, is -2258 kJ mol ⁻¹ based on an d -2223 kJ mol ⁻¹ based on theoretical calculations. eatch the ionic model? Justify your answer. (1)
	(Total for Question 15 = 15 marks)

|____

Mass/charge ratio	% abundance	
135	9.01	
136	10.81	
137	12.32	
138	67.86	
		(2)
promine has two stable isotopes, to Br_2^+ ions would be seen in the seen in the seen in the second seco		

	$\Delta H_{\rm f}^{\leftrightarrow}$ /kJ mol ⁻¹
CO ₂ (g)	-393.5
H ₂ O(l)	-285.8
CH ₃ OH(l)	-239.1

(iii) Use your cycle and the data below to calculate the standard enthalpy change of combustion of methanol, ΔH_c^{\ominus} .

(2)

 (iii) Use your answers to (c)(i) and (ii) to calculate the experimental value for the standard enthalpy change of combustion. Include a sign and units in your answer, which should be given to three significant figures. (1) (iv) Compare your answers to (b)(iii) and (c)(iii) and give TWO reasons to explain any differences. (2) (1) (1) (1) (1) (2) (1) 						
any differences. (2)	stand	ard enthalpy change	e of combustion. In	nclude a sign and u	l value for the hits in your	(1)
(Total for Question 17 = 14 marks)	(iv) Com any c	pare your answers to lifferences.	o (b)(iii) and (c)(iii) and give TWO rea	usons to explain	(2)
(Total for Question 17 = 14 marks)						
				(Total for Ques	tion 17 = 14 ma	urks)

|____

(c) (i)	Use displayed formulae to show the mechanism for Reaction 3 .	(3)
(ii)	Explain why the alkene, propene, could form two products when it reacts with hydrogen bromide in a similar way.	(1)

	Paper Cup	Polystyrene Cup
Raw Materials (per cup)		
Wood or bark	26 g	0 g
Petroleum fractions	2.2 g	3.4 g
Energy used (per tonne of naterial made)	980 kWh	280 kWh
Water released into environment (per tonne of material made)	120 m ³	2.5 m ³
Air emissions (per tonne of material made)		
Chlorine / chlorine dioxide	0.4 kg	0 kg
Sulfides / sulfur dioxide	11 kg	3.5 kg
Hydrocarbons	0 kg	40 kg

(2)

the life cycle of the cups that impact more reliable.	Suggest TWO further pieces of information, not given in the table, regarding the life cycle of the cups that would make any assessment of the environmental impact more reliable.										
F	(2)										
	(Total for Question 18 = 22 marks)										
	TOTAL FOR SECTION B = 60 MARKS										
	TOTAL FOR PAPER = 80 MARKS										

BLANK PAGE

BLANK PAGE

0 (8) (18) 4.0	He helium 2	20.2	Ne	10	39.9	Ar argon	18	83.8	۲.	krypton 36	131.3	Xe	xenon 54	[222]	Rn	radon 86									
0 [] 4																		eported				E			cium
7	(17)	19.0	fluorine fluorine	6	35.5	chlorine	17	79.9		bromine 35	126.9		53	[210]		astatine 85		been re		175		n lutetium 71	[257]	Ľ	lawrencium
9	(16)	16.0	0	oxygen 8	32.1	S Sulfur	16	79.0	Se	selenium 34	127.6	Te	tellurium 52	[209]	Po	polonium 84		116 have	ורורמרבת	173	٩۲	ytterbium 70	[254]	٩	nobelium
2	(15)	14.0	N nitroden	ши о <u>у</u> еп 7	31.0	P phosphorus	15	74.9	As	arsenic 33	121.8	Sb	antimony 51	209.0	Bi	bismuth 83		nbers 112-	טער ווטר ועווץ מענוופוונוכמרפט	169		thulium 69		ΡW	mendelevium
4	(14)	12.0	U L	66	28.1	Si silicon		72.6	e B	germanium 32	118.7	Sn	20 ti	207.2	Pb	lead 82		atomic nur	חתר ווסר וו	167	Ъ	erbium 68	[253]	E	fermium
e	(13)	10.8	B	5	27.0	Al	13	69.7	B B	gallium 31	114.8	Ľ	indium 49	204.4	Ħ	thallium 81		Elements with atomic numbers 112-116 have been reported		165	Но	holmium 67	[251] [254]	E	einsteinium
							(12)	65.4	Zn	zinc 30	112.4	PC	cadmium 48	200.6	Hg	mercury 80				163	D	dysprosium 66	[251]	Ç	californium
							(11)	63.5	Cu	copper 29	107.9	Ag	silver 47	197.0	ΡN	gold 79	[272]	Rg	oenigenium 111	159		terbium 65	[245]	Bk	berkelium
							(10)	58.7	ïz	nickel 28	106.4	РЧ	palladium 46	195.1	£	platinum 78	_	SO	aarmstaattum r	157	PG	gadolinium 64	[247]	Б С	aurium
							(6)	58.9	<u>ی</u>	cobalt 27	102.9	Rh	rhodium 45	192.2	느	iridium 77	[268]	Mt	merunenum 109	152	Eu	europium 63	[243]	Am	americium
1.0	H hydrogen 1						(8)	55.8	Fe	iron 26	101.1	Ru	ruthenium 44	190.2	õ	osmium 76	[277]	H.	108	150	Sm	samarium 62	[242]		plutonium
							(2)	54.9	Mn	chromium manganese 24 25	[98]	Ц	molybdenum technetium 42 43	186.2	Re	rhenium 75	_		107	[147]	Pm	promethium 61	[237]	dN	neptunium
		mass bol number]		(9)	52.0			95.9	Wo	molybdenum 42	183.8	3	tungsten 74	[366]	Sg	seaborgium 106	144	PN	praseodymium promethium 59 60 61	238	⊃	uranium		
	Key	relative atomic mass	atomic symbol	atomic (proton) number			(2)	50.9	>	vanadium 23	92.9	qN	niobium 41	180.9	Ta	tantalum 73	_	P	aubnium 105	141	Pr	praseodymium 59	[231]	Ра	protactinium
		relat	atc	atomic			(4)	47.9	Ë	titanium 22	91.2	Zr	zirconium 40	178.5		hafnium 72	[261]	, R	104	140	e C	cerium 58	232	Ę	thorium
							(3)	45.0	Sc	scandium 21	88.9	≻	yttrium 39	138.9	La*	lanthanum 57	[227]	Ac*	actinium 89		es				
7	(2)	9.0	Be	berywam 4	24.3	Mg	12	40.1	Ca	calcium 20	87.6	Sr	strontium 38	137.3		barium 56	[226]	Ra	88 88		* Lanthanide series	* Actinide series			
-	(1)	6.9	Li thium	3	23.0	Na sodium		39.1	¥	ootassium 19	85.5		rubidium 37	132.9	S	caesium 55	[223]	Ŀ.	87		* Lanth	* Actini			

