

Mathematics B (Linear)

General Certificate of Secondary Education

Component J567/03: Mathematics Paper 3 (Higher)

Mark Scheme for November 2013

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2013

Annotations used in the detailed Mark Scheme.

Annotation	Meaning
~	Correct
×	Incorrect
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working (after correct answer obtained), provided method has been completed
MO	Method mark awarded 0
M1	Method mark awarded 1
M2	Method mark awarded 2
A1	Accuracy mark awarded 1
B1	Independent mark awarded 1
B2	Independent mark awarded 2
MB	Misread
SC	Special case
^	Omission sign

These should be used whenever appropriate during your marking.

The **M**, **A**, **B**, etc annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate these scripts to show how the marks have been awarded. It is not mandatory to use annotations for any other marking, though you may wish to use them in some circumstances.

Subject-Specific Marking Instructions

- M marks are for <u>using a correct method</u> and are not lost for purely numerical errors.
 A marks are for an <u>accurate</u> answer and depend on preceding M (method) marks. Therefore M0 A1 cannot be awarded.
 B marks are <u>independent</u> of M (method) marks and are for a correct final answer, a partially correct answer, or a correct intermediate stage.
 SC marks are for <u>special cases</u> that are worthy of some credit.
- 2. Unless the answer and marks columns of the mark scheme specify **M** and **A** marks etc, or the mark scheme is 'banded', then if the correct answer is clearly given and is <u>not from wrong working</u> **full marks** should be awarded.

Do <u>not</u> award the marks if the answer was obtained from an incorrect method, ie incorrect working is seen <u>and</u> the correct answer clearly follows from it.

3. Where follow through (**FT**) is indicated in the mark scheme, marks can be awarded where the candidate's work follows correctly from a previous answer whether or not it was correct.

Figures or expressions that are being followed through are sometimes encompassed by single quotation marks after the word *their* for clarity, eg FT 180 × (*their* '37' + 16), or FT 300 – $\sqrt{(their \cdot 5^2 + 7^2)}$. Answers to part questions which are being followed through are indicated by eg FT 3 × *their* (a).

For questions with FT available you must ensure that you refer back to the relevant previous answer. You may find it easier to mark these questions candidate by candidate rather than question by question.

- 4. Where dependent (**dep**) marks are indicated in the mark scheme, you must check that the candidate has met all the criteria specified for the mark to be awarded.
- 5. The following abbreviations are commonly found in GCSE Mathematics mark schemes.
 - **figs 237**, for example, means any answer with only these digits. You should ignore leading or trailing zeros and any decimal point eg 237000, 2.37, 2.370, 0.00237 would be acceptable but 23070 or 2374 would not.
 - **isw** means **ignore subsequent working** after correct answer obtained and applies as a default.
 - nfww means not from wrong working.
 - oe means or equivalent.
 - rot means rounded or truncated.
 - **seen** means that you should award the mark if that number/expression is seen anywhere in the answer space, including the answer line, even if it is not in the method leading to the final answer.
 - soi means seen or implied.

- 6. In questions with no final answer line, make no deductions for wrong work after an acceptable answer (ie **isw**) unless the mark scheme says otherwise, indicated by the instruction 'mark final answer'.
- 7. In questions with a final answer line following working space,
 - (i) if the correct answer is seen in the body of working and the answer given on the answer line is a clear transcription error allow full marks unless the mark scheme says 'mark final answer'. Place the annotation ✓ next to the correct answer.
 - (ii) if the correct answer is seen in the body of working but the answer line is blank, allow full marks. Place the annotation ✓ next to the correct answer.
 - (iii) if the correct answer is seen in the body of working but a completely different answer is seen on the answer line, then accuracy marks for the answer are lost. Method marks could still be awarded. Use the M0, M1, M2 annotations as appropriate and place the annotation ***** next to the wrong answer.
- 8. In questions with a final answer line:
 - (i) If one answer is provided on the answer line, mark the method that leads to that answer.
 - (ii) If more than one answer is provided on the answer line and there is a single method provided, award method marks only.
 - (iii) If more than one answer is provided on the answer line and there is more than one method provided, award zero marks for the question unless the candidate has clearly indicated which method is to be marked.
- 9. In questions with no final answer line:
 - (i) If a single response is provided, mark as usual.
 - (ii) If more than one response is provided, award zero marks for the question unless the candidate has clearly indicated which response is to be marked.
- 10. When the data of a question is consistently misread in such a way as not to alter the nature or difficulty of the question, please follow the candidate's work and allow follow through for **A** and **B** marks. Deduct 1 mark from any **A** or **B** marks earned and record this by using the MR annotation. **M** marks are not deducted for misreads.

- 11. Unless the question asks for an answer to a specific degree of accuracy, always mark at the greatest number of significant figures even if this is rounded or truncated on the answer line. For example, an answer in the mark scheme is 15.75, which is seen in the working. The candidate then rounds or truncates this to 15.8, 15 or 16 on the answer line. Allow full marks for the 15.75.
- 12. Ranges of answers given in the mark scheme are always inclusive.
- 13. For methods not provided for in the mark scheme give as far as possible equivalent marks for equivalent work. If in doubt, consult your Team Leader.
- 14. Anything in the mark scheme which is in square brackets [...] is not required for the mark to be earned, but if present it must be correct.

Qı	Question		Answer	Marks	Part Marks and Guidance			
1	(a)	(i)	$2^5 \times 3$ Or 2 × 2 × 2 × 2 × 2 × 3 or better	2	M1 for correct factor pair or product seen or attempt at factor tree/ladder with at least two steps or answer $2^k \times 3$ oe OR SC1 for 2, 2, 2, 2, 2, 3 identified but not as product	Condone 3 ¹ for 2 or 1 marks May be part of factor tree or eg 4 × 8 × 3 May contain errors		
		(ii)	12 final answer	2	B1 for 2, 2, 3 clearly identified for both 96 and 108 or answer of 2, 3, 4 or 6 oe	e.g. in a Venn diagram e.g. accept 2 ² for B1		
	(b)		$5\frac{1}{6}$ final answer	3	B2 for $5\frac{2}{12}$ or $\frac{62}{12}$ seen or other unsimplified equivalent OR M1 for $1\frac{3}{4}$ converted to $1\frac{9}{12}$ or $\frac{21}{12}$ AND M1 for correct addition of <i>their</i> two improper fractions/mixed numbers with common denominator AND M1 for <i>their</i> improper fraction/mixed number correctly converted to a mixed number in its lowest terms max 2 marks if answer incorrect	M1 may be implied by $\frac{3}{4}$ converted to $\frac{9}{12}$ but not $3\frac{9}{12}$ Or M1 for other conversion to common denominator with at least one correct numerator allow this M1 even if no simplification required		
2	(a)		-7 125	1 1				

	Question		Answer		Marks	Part Marks and Guidance		
	(b)		21		2	M1 for 9 from b^2 or + 3 from – b soi Or for 2 × ($^-3$) ² – $^-3$ seen	e.g. $-363 = -33$ implies M1 Condone missing brackets in $(-3)^2$ if result 9 seen	
3	(a)		97.28	3 [p]	4	 B3 for 24.32 seen from 12.8 × 1.9 or answer £97.28 or figs 9728 OR M1 for 1.9 × 4 × 12.8 soi AND B1 for figs 76, 512, 38, 152, 1152 896, 768, 608, 4608 or 95 seen AND B1 for answer in range 87 to 104 	allow rounding of 97.28 seen for 4 marks May be seen in stages, may be done in any order but not using rounded values. Condone additional multiplication by 7	
	(b)	(i)	4 5 6 7 8	9 3 4 7 0 4 7 8 0 3 3 4 4 7 8 6	3	 M2 for table with 4 correct rows Or M1 for unordered diagram with at most one error or omission 		

Question	Answer	Marks	Part Marks and	l Guidance
	He uses fewer units than average with clear and correct working using appropriate representative value/values e.g. Using median = 69, he uses 276 units per month on average which is less than average household e.g. Using his maximum four weekly values, he uses 315 units per month which is less than the average household e.g. The average household uses 82.5 units per week and his median weekly use is 69 units which is less than the average	4	 B2 for selecting an appropriate representative daily or weekly or monthly or 4-monthly amount making the time period clear Or B1 for representative amount that is not appropriate or incorrect representative value M1 for correct answer to calculation allowing like with like comparison e.g. for <i>their</i> weekly average × 4 Or <i>their</i> daily average × 30 Or calculation of <i>their</i> monthly average Or average household uses 330 × 4 = 1320 in 4 months Or average household uses 330 ÷ 4 = 82.5 per week B1 for comparison and conclusion ft <i>their</i> values If their conclusion follows from comparison of incorrect figures, maximum 3 marks may be awarded 	For all marks follow through their stem and leaf diagram e.g. median [weekly] = 69 maximum monthly = 74 + 77 + 78 + 86 [= 315] total in 4 months = 1077 e.g. addition of any four weekly amounts or incorrect addition of all 16 amounts or incorrect median Allow use of e.g. $4\frac{1}{3}$ weeks per month or 28 to 31 days per month Must compare like with like, e.g. Felix weekly with average weekly or Felix monthly with average monthly If choice of values used, mark to the candidate's advantage

Question	Answer	Marks	Guidance
4*	$x = 45^{\circ}$ with correct and clearly laid out solution. All required angles clearly identified in working with a correct reason given for each angle found. Correct mathematical terminology and notation throughout	5	e.g. $\angle CED = \angle ACB = 80^\circ$, corresponding angles $\angle ABC = 180^\circ - 125^\circ = 55^\circ$, angles on a line $\angle CAB = 180^\circ - 55^\circ - 80^\circ = 45^\circ$, angles in a triangle $x = 45^\circ$, alternate angles equal
	4a correct answer of $x = 45^{\circ}$ with at least two correct angles and related reasons stated 4b complete solution with full reasons and maximum one arithmetic slip to reach incorrect value for <i>x</i>	4–3	 3a correct answer of x = 45° with insufficient solution/reasons seen 3b at least two relevant angles stated with correct reasons, may FT arithmetic slip 3c at least three relevant angles found, may be indicated in correct position on diagram, may FT arithmetic slip For the lower mark
	 2a one relevant angle stated with correct reason, allow FT 2b two relevant angles found, may be indicated in correct position on diagram, allow FT 2c two relevant reasons stated, need not be linked with appropriate angles No correct work seen 	2–1	 1a one relevant angle found, may be indicated on diagram, allow FT 1b one relevant reason stated, need not be linked with appropriate angle Acceptable reasons: Alternate angles equal Corresponding angles equal [Co-]interior/allied [angles] = 180 [angles in a] triangle = 180 [angles on a straight] line = 180 [angles in a] quadrilateral = 360 Similar triangles (only if correct angle pairs used) 180 may be implied in above reasons by a correct calculation seen and equal by a correct pair soi Condone use of Z (in place of alternate), F (in place of corresponding), C/U (in place of interior/allied) for up to 4 marks

Question		on	Answer	Marks	Part Marks and Guidance		
5	(a)	(i)	74 120 oe	1	accept 0.616[] or 0.617 or 61.6[][%] or 61.7% or better	do not accept ratio as answer isw for incorrect cancelling or 74 in 120 or 74 out of 120 etc after correct fraction seen Condone 'likely' after correct fraction seen	
		(ii)	600 final answer	2	M1 for $\frac{30}{120} \times 2400$ oe or for 600 seen with 2400	e.g. $\frac{600}{2400}$ or 600 out of 2400	
	(b)		50	2	M1 for $\frac{1500}{2400}$ × 80 oe		
6	(a)		<i>x</i> ≤ 4	2	M1 for $3x \le 8 + 4$ or better AND M1 for $x \le \frac{b}{a}$ after $ax \le b$ seen max 1 mark if answer incorrect OR SC1 for answer 4 or $x \dots 4$ with any incorrect equality or inequality symbol or answer $3 \times 4 - 4 \le 8$	Condone use of = or incorrect inequality symbol in place of \leq for all method marks $a \neq 1, b \neq 0$ condone e.g. '4 or less' as answer for SC1	
	(b)		4 	1	FT <i>their</i> inequality in (i)	Condone any indication at 4 Condone missing arrow at other end but do not accept indication of the line terminating Accept any length line	

Q	Question		Answer	Marks	Part Marks and Guidance			
7			Use of 360° at point Or use of symmetry to halve 90°	B1	e.g. 360 – 90 seen or angles summing to 360 seen	implied by 270 seen		
			[Angle in each polygon =] 135[°]	B1	or exterior angle is 45			
			Number of sides = 360 ÷ (180 – <i>their</i> 135)	B1	or identifying polygon has 8 sides or $180(n-2) = 135n$ used	condone poor notation for division e.g. 45 ÷ 360 if intention clear		
			Octagon	B1		All marks independent		
8	(a)		Triangle B correctly positioned Vertices (⁻ 4, ⁻ 2), (⁻ 4, ⁻ 3), (⁻ 1, ⁻ 2)	4	 B3 for triangle B with two vertices correct Or for correct rotation followed by translation by 5 left or 1 down Or for correct translation following 90° anticlockwise rotation about origin OR B2 for correct rotation of A clockwise about origin followed by incorrect or no translation Or for 90° anticlockwise rotation about origin followed by translation by 5 left or 1 down OR B1 for rotation of A 90° anticlockwise about origin followed by incorrect or no translation OR B1 for rotation of A 90° anticlockwise about origin followed by incorrect or no translation OR SC2 for correct translation following 180° rotation about origin OR SC1 for translation of 5 left or 1 down following 180° rotation about origin 	Use overlay Accept intention if triangles not labelled Red triangle scores 4 marks, horizontal or vertical translation of red scores B3, any other translation of red scores B2 Green triangle scores B3, horizontal or vertical translation of green scores B2, any other translation of green scores B1 Blue triangle scores SC2, horizontal or vertical translation of blue scores SC1, any other translation of blue scores SC0		

Question		on	Answer	Marks	Part Marks and Guidance			
	(b)		[Centre] (⁻ 1, 2) and [scale factor] ⁻ 2 with no other transformation	2	B1 for ([−] 1, 2) Or B1 for [−] 2	Do not accept centre written as vector Condone e.g. 'negative enlargement of 2' for scale factor ⁻ 2		
9			[Shortest side =] 7 nfww	5	M4 for $x = 4$ nfww OR M1 for $8x + 2$ or $4x + 18$ seen AND M1 for their ' $8x + 2' =$ their ' $4x + 18'$ AND M1 for correctly collecting terms their ' $8x - 4x' =$ their ' $18 - 2'$ AND M1 for $x = \frac{b}{a}$ after $ax = b$ seen AND M1 for correctly evaluating $11 - x$ using their positive x max 4 marks if answer incorrect	allow 5 marks for $11 - x$ on answer line if seen evaluated as 7 in working accept unsimplified any equivalent equation FT <i>their</i> attempts at perimeters FT <i>their</i> linear equation $a \neq 1$ and $a \neq b$ and $\frac{b}{a} > 0$ 0 < x < 11 Trial and improvement methods can score 5 for shortest side = 7 or 4 for $x = 4$ only. Answer 7 with no working scores 5		
10	(a)		5 15 34 48 60	1				

Q	Question		Answer	Marks	Part Marks and Guidance		
	(b)		All points plotted correctly and joined with smooth curve or straight line segments	2	FT <i>their</i> table B1 for at least 4 points plotted at correct height within interval	Allow ±1 mm for plotting points and drawing curve, use overlay for guidance Condone starting at (20, 5) Mark curve generously Bar chart only scores 0, bar chart with curve scores max B1	
	(c)		14 to 16	2	B1 for 44 to 46 seen or FT reading from <i>their</i> line or curve at <i>s</i> = 75	FT for <i>their</i> reading or '60 – <i>their</i> reading', tolerance ±1 no FT from bar chart	
11	(a)		9 060 000	1		condone dots for commas if digits clear	
	(b)		3.4 × 10 ⁵ or 340 000	2	B1 for figs 34 Or M1 for 10 100 000 and 9760 000 seen or 10.1 and 9.76 seen or 1.01 and 0.976 seen	may be as part of numbers in standard form	
	(c)		2 × 10 ⁸ or 1.995 × 10 ⁸	2	M1 for 50 × 4 × 10 ⁶ soi or 50 × 3.99 × 10 ⁶ soi SC1 for answer figs 2 or answer figs 1995	e.g. may be implied by correct figs seen in working, and answer truncated but with 10 ⁸ in correct standard form	

a) (i)			Part Marks and Guidance			
A) (1)	1.8	2	M1 for 3 × 0.6 or answer figs 18			
(ii)	1800	1FT	FT 1000 × <i>their</i> 1.8	strict follow through		
o) (i)	0.03 [m ²]	3	M2 for 0.1 ² soi Or M1 for 100 seen or scale factor 0.1 soi	accept answer 300 cm ² if units clearly stated e.g. M1 implied by answer 0.3		
(ii)	1.8	1FT	FT their (a)(ii) ÷ 1000	strict follow through		
	Correct region R indicated	3	 B2 for region on the correct side of two inequalities B1 for region on the correct side of one inequality 	Do not assume axes are boundaries unless identified by shading i.e. if no shading, assume that the region is bounded by the inequality lines If no label R, assume shading identifies region unless clearly shading out each individual inequality If their region is bounded by lines other than those given maximum B1 may be awarded		
	$ \xrightarrow{x} \xrightarrow{x} x x \xrightarrow{x} x x \xrightarrow{x} x x x \xrightarrow{x} x x x x x x x x x x x x x x x x x x $	1	both correct, first line any with positive gradient, second line any with negative gradient or horizontal or vertical line both correct, first graph any with two positive solutions, second any with one/no positive solutions Or B1 for any one parabola seen	accept any clear intention of correct graphs, ie not ruled but attempt at straight line Accept any clear intention of correct graphs, ie attempt at parabola Condone more than one parabola on axes for B1		
	(ii) (i) (i)	(ii) 1800) (i) 0.03 [m²] (ii) 1.8 Correct region R indicated Image: Constant of the second sec	(ii)18001FT)(i) $0.03 [m^2]$ 3(ii) 1.8 1FTCorrect region R indicated3iii) 1.8 1iii) 1.8 <th>(ii)18001FTFT 1000 × their 1.8(i)0.03 [m^2]3M2 for 0.1^2 soi Or M1 for 100 seen or scale factor 0.1 soi(ii)$1.8$1FTFT their (a)(ii) + 1000(iii)$1.8$1FTFT their (a)(ii) + 1000Correct region R indicated3B2 for region on the correct side of two inequalities B1 for region on the correct side of one inequalityImage: the state of the stat</th>	(ii)18001FTFT 1000 × their 1.8(i) 0.03 [m^2] 3M2 for 0.1^2 soi Or M1 for 100 seen or scale factor 0.1 soi(ii) 1.8 1FTFT their (a)(ii) + 1000(iii) 1.8 1FTFT their (a)(ii) + 1000Correct region R indicated3B2 for region on the correct side of two inequalities B1 for region on the correct side of one inequalityImage: the state of the stat		

Question	Answer	Marks	Part Marks and Guidance		
15	5/8 oe	4	M3 for sum of at least four of required probabilities seen: DD, DM, MD, DW and WD Or for P(D) + P(MD) + P(WD) Or for 1 - P(no dark) OR M2 for P(no dark) = $\frac{10}{16} \times \frac{9}{15}$ or $\frac{3}{8}$ Or for correct tree diagram showing probabilities on sufficient branches Or for at least two of the five required probabilities found OR M1 for at least one correct combined probability seen Or for three correct probabilities for first chocolate seen: $M = \frac{8}{16}, D = \frac{6}{16}$ and $W = \frac{2}{16}$ Or for identifying the five required pairs of outcomes: DD, DM, MD, DW and WD OR SC2 for answer $\frac{27}{28}$ or $\frac{39}{64}$ Or SC1 for correct tree diagram assuming just 6 dark, 2 white chocolates or correct tree diagram assuming replacement	allow all method marks if correct multiplication seen, even if not evaluated or incorrectly evaluated $P(MM) = \frac{8}{16} \times \frac{7}{15} = \frac{7}{30}$ $P(MD) = \frac{8}{16} \times \frac{6}{15} = \frac{1}{5}$ $P(MW) = \frac{8}{16} \times \frac{2}{15} = \frac{1}{15}$ $P(DM) = \frac{6}{16} \times \frac{8}{15} = \frac{1}{5}$ $P(DD) = \frac{6}{16} \times \frac{5}{15} = \frac{1}{8}$ $P(DW) = \frac{6}{16} \times \frac{2}{15} = \frac{1}{20}$ $P(WM) = \frac{2}{16} \times \frac{8}{15} = \frac{1}{15}$ $P(WD) = \frac{2}{16} \times \frac{6}{15} = \frac{1}{20}$ $P(WW) = \frac{2}{16} \times \frac{1}{15} = \frac{1}{120}$ allow equivalent marks throughout for methods using dark/not dark	

Question		on	Answer	Marks	Part Marks and Guidance			
16	(a)		4.5	3	nfww M1 for eliminating fraction and expanding bracket 3x - 1 = 5x - 10 AND M1 for collecting terms FT	condone $3x - 1 = 5x - 2$ or $3x - 1 = x - 10$ or $0.6x - 0.2 = x - 2$ for M1 correct collection from $ax + b =$		
					$^{-1} + 10 = 5x - 3x$ AND M1 for $x = \frac{b}{a}$ after $ax = b$ seen	cx + d to $ax - cx = d - ba \neq 1 or 0 and a \neq b and b \neq 0$		
					max 2 marks if answer incorrect			
	(b)		a ⁸	2	M1 for $(a^{-4})^{-2}$ or $\left(\frac{1}{a^4}\right)^{-2}$ or $\left(\frac{a^9}{a^5}\right)^2$ or $\frac{a^{-10}}{a^{-18}}$ or $\frac{a^{18}}{a^{10}}$ seen	condone a ⁻⁴⁻² for M1		
	(c)		$\frac{14-x}{(x-2)(x+1)}$ or $\frac{14-x}{x^2-x-2}$	3	M1 for $4(x + 1) - 5(x - 2)$ or $4x + 4 - 5x + 10$ with three terms correct or better seen M1 for correct common denominator seen as denominator	Mark final answer but isw for incorrect expansion of denominator after correct denominator seen May be in two separate fractions condone missing final bracket in denominator		
17	(a)		a + b final answer	1				
	(b)		b – a final answer	1		Condone b + ⁻ a		

Question		on	Answer	Marks	Part Marks and Guidance	
	(c)		$\frac{1}{3}$ (a + b) or $\frac{1}{3}$ a + $\frac{1}{3}$ b final answer	1	FT $\frac{1}{3}$ (<i>their</i> ' a + b ')	
	(d)		$\frac{1}{3}$ (2 b – a) or $\frac{2}{3}$ b – $\frac{1}{3}$ a final answer	2	M1 for $-\frac{1}{3}$ (a + b) + b oe or for b ± <i>their</i> $(\frac{1}{3}$ (a + b)' or for $\overrightarrow{XO} + \overrightarrow{OR}$ or $\overrightarrow{XQ} + \overrightarrow{QR}$ soi	
18			20 + 5√3	4	B1 for $\sqrt{5}$ or $\sqrt{15}$ or $\sqrt{75}$ seen M1 for $[\frac{1}{2} \times] \sqrt{5} \times \sqrt{15}$ M1 for total area = $15 + 5 + 2 \times \frac{1}{2} \times \sqrt{5} \times \sqrt{15}$ or better M1 for $5\sqrt{3}$ seen max 3 marks if answer incorrect	$\sqrt{75}$ seen implies B1 and M1 may be implied by adding their 'simplified' $\sqrt{5} \times \sqrt{15}$ to 20

Question	Answer	Marks	Part Marks and Guidance	
19	x = -0.75, y = 8 x = 2, y = -3	6	M2 for $4x^2 - 5x - 6$ or $6 + 5x - 4x^2$ soi OR M1 for attempting to equate e.g. $5 - 4x = 4x^2 - 9x - 1$ oe	Or $y^2 - 5y - 24$ reaching quadratic equation in one variable, need not be
			AND	simplified
			quadratic (4x + 3)(x - 2)	dependent on at least M1 e.g. $(y + 3)(y - 8)$ Or for correct FT substitution into formula $5 \pm \sqrt{25 \pm 96}$
			OR M1 for $(4x + 3)(x + 2)$	with $\frac{5 \pm \sqrt{25 + 50}}{8}$ or better seen e.g. $\frac{5 \pm 11}{8}$
			AND	dependent on at least M1 Or for attempt to use formula with no more than one error
			A1 for $x = 2$ and -0.75 A1 for $y = -3$ and 8 After A0, allow SC1 for one pair of x and y values correct	allow A marks if solutions clear in working, transferred to wrong places on answer lines
			Or for both y values correctly FT their x values substituted into $y = 5 - 4x$	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2013