Surname	Other	names
Edexcel International GCSE	Centre Number	Candidate Number
Physics Unit: 4PH0 Paper: 2PR		
•		
• Wednesday 5 June 2013 – Time: 1 hour	Afternoon	Paper Reference 4PH0/2PR

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.
- Show all the steps in any calculations and state the units.
- Some questions must be answered with a cross in a box ⊠. If you change your mind about an answer, put a line through the box ₩ and then mark your new answer with a cross ⊠.

Information

- The total mark for this paper is 60.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

EQUATIONS

You may find the following equations useful.

energy transferred = current × voltage × time	$E = I \times V \times t$
pressure × volume = constant	$p_1 \times V_1 = p_2 \times V_2$
frequency = $\frac{1}{\text{time period}}$	$f = \frac{1}{T}$
$power = \frac{work done}{time taken}$	$P = \frac{W}{t}$
$power = \frac{energy transferred}{time taken}$	$P = \frac{W}{t}$
orbital speed = $\frac{2\pi \times \text{orbital radius}}{\text{time period}}$	$v = \frac{2 \times \pi \times r}{T}$
pressure temperature = constant	$\frac{p_1}{T_1} = \frac{p_2}{T_2}$
force = $\frac{\text{change in momentum}}{\text{time taken}}$	

time taken

Where necessary, assume the acceleration of free fall, $g = 10 \text{ m/s}^2$.

		Answer ALL questions.
1	These que	estions are about radioactivity.
	(a) Which	of these is measured in becquerel (Bq)?
	A	(1) activity
	B	frequency
	🛛 C	half-life
	D	radiation
	(b) Which	of these has a mass (nucleon) number of 4?
	A	alpha particle (1)
	B	beta particle
	🗵 C	gamma ray
	D	x-ray
	(c) Which	of these is the same as an electron? (1)
	A	alpha particle
	B	beta particle
	🖾 C	gamma ray
	D	x-ray
	(d) Which	of these is the most ionising?
	Α 🛛	alpha particle
	B	beta particle
	🗵 C	gamma ray
	D	x-ray
		(Total for Question 1 = 4 marks)

3

2 (a) Which of these is a unit for the moment of a force?

- 🖾 **A** N
- 🖾 B Nm
- 🖾 C N/m
- \square **D** N/m²

(b) A painter sets up a uniform plank so he can paint a wall.

The plank is 3 m long and weighs 500 N.

(i) Use the principle of moments to show that the upward force A is 250 N.

(4)

(1)

(ii) State the value of force B.

(1)

force B =N

- **3** A student investigates friction between a block of wood and different types of surface.
 - (a) The student uses the equipment shown in photograph A to measure the force needed to move the block of wood.

(b) The student investigates five different types of surface.

The table shows his results.

		Force in N	
Type of surface	1st reading	2nd reading	Average
chipboard	3.0	3.0	3.0
wood	2.5	2.5	2.5
coarse sandpaper	4.7	4.3	
fine sandpaper	5.6	5.8	5.7
ice	0.5	0.5	0.5
(i) Give an example	of a non-continuous va	ariable in this investigatio	on. (1)
	ble by inserting the mis age force results for this	sing average. investigation on the grid	(1) d. (4)
_			

7

P 4 3 3 2 0 A 0 8 2 0

	(e) Suggest two ways in which the student could reduce friction between the two surfaces. (2)	
1		
2		
	(Total for Question 3 = 14 marks)	
		9

4 This question is about static electricity.
(a) Which of these materials is an electrical conductor? (1)
A paper
B plastic
C silver
D wood

(b) A forensic scientist uses an electrostatic dust print lifter (EDPL) to take impressions of footprints.

The diagram shows a simplified EDPL and a description of how it works.

(c)	The photograph	shows a	typical	dust	print	on a	lifting	sheet.
-----	----------------	---------	---------	------	-------	------	---------	--------

BLANK PAGE

(ii) 1	Some people think that wind farms are a good idea.	
	Others disagree.	
	Discuss the advantages and disadvantages of building more wind farms.	
		(6)
	(Total for Question 5 = 11 ma	rks)
	(Total for Question 5 = 11 ma	rks)
	(Total for Question 5 = 11 ma	rks)
	(Total for Question 5 = 11 ma	rks)
	(Total for Question 5 = 11 ma	rks)
	(Total for Question 5 = 11 ma	rks)
	(Total for Question 5 = 11 ma	rks)
	(Total for Question 5 = 11 ma	rks)
	(Total for Question 5 = 11 ma	rks)
	(Total for Question 5 = 11 ma	rks)
	(Total for Question 5 = 11 ma	rks)
	(Total for Question 5 = 11 ma	rks)
	(Total for Question 5 = 11 ma	rks)
	(Total for Question 5 = 11 ma	rks)
	(Total for Question 5 = 11 ma	rks)
	(Total for Question 5 = 11 ma	rks)

6 Newton's Cradle consists of a set of identical solid metal balls hanging by threads from a frame so that they are in contact with each other.

Newton's Cradle

(a) A student initially pulls ball A to the side as shown.

The student releases ball A and it collides with ball B.

(i) State the equation linking momentum, mass and velocity.

(1)

(ii) Each ball has a mass of 100 g.

At the time of collision, ball A has a velocity of 3m/s.

Calculate the momentum of ball A at the time of impact and give the unit.

(3)

momentum unit

3 3 2 0 A 0

(i) Explain how this wave pattern is produced. (2) (ii) Explain why light waves do not make a similar pattern as they pass through the same gap. (2) (Total for Question 7 = 8 marks) **TOTAL FOR PAPER = 60 MARKS**

BLANK PAGE