

Mark Scheme (Results) January 2011

GCE

GCE Chemistry (6CH04/01)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

Alternatively, you can speak directly to a subject specialist at Edexcel on our dedicated Science telephone line: 0844 576 0037

January 2011

Publications Code UA026200

All the material in this publication is copyright $\ensuremath{\mathbb{C}}$ Edexcel Ltd 2011

Section A (multiple choice)

Question Number	Correct Answer	Mark
1 (a)	D	1

Question Number	Correct Answer	Mark
1 (b)	В	1

Question Number	Correct Answer	Mark
1 (c)	A	1

Question	Correct Answer	Mark
Number		
2	D	1

Question Number	Correct Answer	Mark
3	D	1

Question Number	Correct Answer	Mark
4	В	1

Question Number	Correct Answer	Mark
5	C	1

Question Number	Correct Answer	Mark
6	C	1

Question Number	Correct Answer	Mark
7 (a)	A	1

Question Number	Correct Answer	Mark
7 (b)	A	1

Question Number	Correct Answer	Mark
7 (c)	D	1

Question Number	Correct Answer	Mark
8	В	1

Question Number	Correct Answer	Mark
9	D	1

Question Number	Correct Answer	Mark
10	C	1

Question Number	Correct Answer	Mark
11	D	1

Question Number	Correct Answer	Mark
12	D	1

Question Number	Correct Answer	Mark
13	A	1

Question Number	Correct Answer	Mark
14	В	1

Question Number	Correct Answer	Mark
15	C	1

Question Number	Correct Answer	Mark
16	A	1

TOTAL FOR SECTION A = 20 MARKS

Section **B**

Question Number	Acceptable Answers	Reject	Mark
17 (a)	$\Delta S_{system} = (3x2x65.3 + 197.6) - (186.2 + 188.7)$ Correct data for CH ₄ and CO (186.2 and 197.6) (1)		2
	= (+) 214.5 / 215 (J mol ⁻¹ K ⁻¹) / (+) 0.2145 / 0.215 kJ (mol ⁻¹ K ⁻¹) (1)	214 0.214	
	Units must be shown if data has been converted to kJ		
	Full marks (2) for correct answer without working Ignore sf except 1		
	Answer of -214.5 scores (1) Answer of +18.6 if entropy of H not doubled		
	scores (1) Answer of -46.7 if entropy of H_2 not tripled scores		
	(1)		
	ALLOW TE in second mark for minor error in data e.g. writing 63.5 instead of 65.3. No TE if data used is not entropy of compounds.		

Question Number	Acceptable Answers	Reject	Mark
17 (b)	$(\Delta S_{surroundings}) = \frac{-\Delta H}{T}$ Expression or use of expression, $\frac{-206.1x(1000)}{298}$ (1) = -691.6 J (mol ⁻¹ K ⁻¹)/ -0.6916 kJ (mol ⁻¹ K ⁻¹) (1) Ignore sf except 1		2

Question Number	Acceptable Answers	Reject	Mark
17 (c)	$\Delta S_{\text{total}} = (214.5 + (-691.6)) = -477.1 \text{ (J mol}^{-1} \text{ K}^{-1}) / - 0.4771 \text{ (kJ mol}^{-1} \text{ K}^{-1}) \text{ (1)}$		2
	ALLOW TE for answer to (a) plus answer to (b). If 214.5 is added to -0.69 no TE unless -0.69 is specified to be in joules. Ignore sf except 1	Addition of value in J to specified value in kJ	
	Negative / less than zero (so not spontaneous) / would be positive if spontaneous. (1) ALLOW "feasible" for spontaneous.	Comments on kinetic stability	
	If answer to calculation is positive, accept comment that it would be expected to be negative if not spontaneous		

Question Number	Acceptable Answers	Reject	Mark
*17 (d) (i)	$K_{p} = \frac{(pH_{2})^{3}x(pCO)}{(pCH_{4})(pH_{2}O)} $ (1)	Square brackets	6
	4 Correct partial pressures (3)		
	CH ₄ H ₂ O CO H ₂		
	pp 0.25 0.25 0.375 1.125		
	ALLOW partial pressures as fractions		
	$K_{\rm p} = \frac{(1.125)^3 \text{x} (0.375)}{(0.25)(0.25)} = 8.54 \text{atm}^2$		
	value of K_p (1)		
	unit (1) (Stand alone mark)		
	Correct calculation without working scores the 5 calculation marks.		
	TE from K_p expression if inverted Ignore sf except 1	TE for K_p expression with addition, not multiplication	
	If any partial pressures are incorrect: Calculating total number of moles (6.4) (1)	matipication	
	Calculating mole fractions (0.125, 0.125, 0.1875, 0.5625 if total number of moles is correct) (1)		
	Multiplying mole fractions by total pressure (x 2 atm) (1)		
	value of K _p (1)		
	unit (1) (stand alone mark)		
	ALLOW TE in value of K_p only from incorrect partial pressures, not using values in question as not using equilibrium moles		
	If treated as a K_c calculation following K_p expression : K_p expression (1) units atm ² (1)		
	Max. mark (2)		

Question Number	Acceptable Answers	Reject	Mark
17 (d) (ii)	$\Delta S_{total} = (8.31 \text{ ln } 8.54) = (+)17.8 \text{ (J mol}^{-1} \text{ K}^{-1})$ Accept any value that rounds to 17.8 TE from value in (i)		1
	$K_{\rm p}$ value of 87.48 (obtained by treating calculation in (i) as $K_{\rm c}$) gives $\Delta S_{\rm total}$ = 37.16 / 37.12		

- · ·			1
Question	Acceptable Answers	Reject	Mark
Number			
17 (d) (iii)	$17.8 = 225 - \frac{206.1 \times 1000}{T} $ (1)		2
	$T = (\frac{206.1 \times 1000}{207.2}) = 995 / 990 (K) $ (1)		
	Correct answer with no working shown scores 2 Correct method with wrong answer or missing 10 ³ scores 1		
	TE from (ii) K _p value of 87.48 gives T = 1097		
	OR		
	If ΔS_{total} is taken as zero 0 = 225 - $\frac{206.1 \times 1000}{T}$ (1)		
	T = 916K (1)		
	<i>K</i> _p value of 87.48 gives T = 916		
	Ignore sf except 1		

Question	Acceptable Answers	Reject	Mark
Number *17 (e)	$\begin{array}{c} \Delta S_{\text{surroundings}} \ / \ \frac{-\Delta H}{T} \\ \text{becomes less negative making } \Delta S_{\text{total}} \text{ more positive} \\ (\text{as T increases}) \\ \text{OR } \Delta S_{\text{surroundings}} \ / \ \frac{-\Delta H}{T} \end{array}$	Le Chatelier statements without reference to entropy changes	2
	becomes less negative making ΔS_{total} greater (as T increases)		
	$\begin{array}{l} \text{OR (magnitude of) } \Delta S_{\text{surroundings}} \text{ becomes less } / \\ \text{lower making } \Delta S_{\text{total}} \text{ more positive } / \text{ greater (as T increases)} \end{array} \tag{1}$		
	Because ΔS_{total} increases equilibrium constant increases (1)		
	OR		
	value of ΔS_{total} at new temperature is more than at 298K (1) (must be clear that the two ΔS_{total} values at the different temperatures have been considered)	Just 'as temperature increases ΔS_{total} increases'	
	Because ΔS_{total} increases equilibrium constant increases (1)		

Question Number	Acceptable Answers	Reject	Mark
18 (a)	pH = (-log 0.25) = 0.602 / 0.60 / 0.6 Ignore significant figures		1

Question Number	Acceptable Answers	Reject	Mark
18 (b) (i)	$(K_{a} =) [H^{+}][CH_{3}CH_{2}COO^{-}]$ $[CH_{3}CH_{2}COOH]$ ALLOW [H_{3}O^{+}] for [H^{+}] ALLOW C ₂ H ₅ for CH ₃ CH ₂ ALLOW [H^{+}][A^{-}] if HA and A ⁻ identified [HA]	Wrong / missing charge on CH ₃ CH ₂ COO ⁻ $K_a = [H^+]^2$ [CH ₃ CH ₂ COOH] unless full expression also given	1

Question Number	Acceptable Answers	Reject	Mark
18 (b) (ii)	1.3 x $10^{-5} = \frac{[H^+]^2}{0.25}$ / rearrangement of this expressio 0.25 (1) ([H ⁺] = 1.8 x 10^{-3})	n	2
	pH = 2.74 (1)		
	Correct answer with no working scores (2) No TE for incorrect $[H^{+}]$		
	Ignore significant figures except 1 Minimum of 1 decimal place needed		

Question Number	Acceptable Answers	Reject	Mark
18 (c) (i)	$CH_3CH_2COOH + NaOH \rightarrow CH_3CH_2COO^{(-)}Na^{(+)} + H_2O$	Equations for ethanoic acid	1
	$OR\ CH_3CH_2COOH\ +\ OH^{\scriptscriptstyle -}\rightarrowCH_3CH_2COO^{\scriptscriptstyle -}\ +\ H_2O$		
	Accept $CH_3CH_2CO_2H$, C_2H_5COOH , $C_2H_5CO_2H$		

Question Number	Acceptable Answers	Reject	Mark
18 (c) (ii)	$1.3 \times 10^{-5} = [H^+][5 \times 10^{-2}] $ (concentration ratio) [7.5 x 10^{-2}] OR		2
	1.3 x $10^{-5} = [\underline{H}^+](1 \times 10^{-3})$ (ratio by moles) (1.5 x 10^{-3}) (ratio by moles allowed as volumes acid and salt equal) (1)		
	([H⁺] = 1.95 x 10 ⁻⁵)		
	pH = 4.7 / 4.7099654 (1)		
	Second mark dependent on first Correct answer with or without working (2)		
	OR		
	pH = pK _a -log (<u>1.5 x 10⁻³</u>) 1 x 10 ⁻³ OR		
	pH = pK _a -log $(\frac{7.5 \times 10^{-2}}{5 \times 10^{-2}})$ (1)		
	pH = 4.7 (1)		
	Correct answer with or without working (2)		
	Accept any value which rounds to 4.7		

Question Number	Acceptable Answers		Reject	Mark
*18 (c) (iii)	Mixture is a buffer	(1)		3
	EITHER			
	OH ⁻ combines with H ⁺ in solution	(1)	NaOH combines	
	Propanoic acid dissociates to replace H ⁺ Correct equations could gain these marks	• •		
	OR			
	OH ⁻ reacts with propanoic acid Correct equation could gain this mark	(1)		
	Significant quantities of weak acid and sa both present /ratio of acid and salt does change			
	ALLOW a reservoir of weak acid and salt present: Allow conjugate base for salt			

Question Number	Acceptable Answers	Reject	Mark
18 (c) (iv)	S-shaped curve, vertical at 25 cm ³ (with kink at start) (1) Starting at pH 2-3 (TE from (b)(ii), finishing at pH 12 -13 (1) Vertical section between 3 and 6 units high centred round a pH of between 8 and 9 (1) Vertical section should not extend over more than ±2.5cm ³ This section should start between 5.5 and 7.5 and finish between 9.5 and 11.5 but do not penalise for very small differences.		3
	Reverse curve maximum 2		

Question Number	Acceptable Answers		Reject	Mark
18 (c) (v)	Either Need indicator changing in vertical region of curve / need indicator changing where pH changes sharply / bromocresol green changes before the vertical region Not bromocresol green which changes at 3.8 - 5.4 OR		Just "the equivalence point is outside the bromocresol green range"	2
	 pK_{in} ±1 must be in vertical section / sharply changing section Not bromocresol green because pK_{in} is 4.7 TE from curve with vertical section including 3.7 - 5.7 	(1) (1) pH		

Question Number	Acceptable Answers	Reject	Mark
18 (d) (i)	Dilute acid / dilute strong named acid or formula / NaOH(aq) followed by dilute acid /water plus dilute acid / water plus H ⁺	NaOH alone water any weak acid concentrated sulfuric acid HCN acid hydrolysis alone	1

Question Number	Acceptable Answers	Reject	Mark
18 (d) (ii)	$\begin{array}{l} CH_3CH_2COCl + H_2O \rightarrow CH_3CH_2COOH + HCl \ / \\ C_2H_5COCl + H_2O \rightarrow C_2H_5COOH + HCl \end{array}$	Equations with NaOH or OH ⁻	1
	Accept displayed formula		

Question Number	Acceptable Answers	Reject	Mark
18 (d) (iii)	Colour change orange to green / blue		1

Question Number	Acceptable Answers	Reject	Mark
18 (e)	Reducing agent /Reduction (of the acid) occurs (1)		2
	Li Al H ₄ / lithium tetrahydridoaluminate / lithium aluminium hydride (1)	Lithal without correct name or formula	
	Allow minor error in name if correct formula is given		
	Ignore solvent		
	ALLOW nucleophile AND H ⁻ for 1 mark		

Question Number	Acceptable Answers	Reject	Mark
19 (a)	Quenches reaction / stops reaction / slows reaction / freezes reaction (1) EITHER by neutralizing the acid / removing the acid / neutralizing the catalyst / removing the catalyst	By neutralizing HI Just "by diluting the reaction mixture" just "by neutralizing the reaction mixture"	2
	OR So that the acid does not react with the thiosulfate (1)		

Question Number	Acceptable Answers	Reject	Mark
19 (b)	Starch (solution)		1

constant are in exc	e and acid ess, without to further	2
Second mark And therefore rate changes would only depend on [iodine] OR so that the overall order is not determined ALLOW [lodine] is the limiting factor (1) NOTE "so that only the [l ₂] changes" scores (2) "so that only the l ₂ concentration changes" scores (2) "so that only the l ₂ changes" scores (1)		

Question Number	Acceptable Answers		Reject	Mark
Number 19 (d)	Zero order (Gradient =) rate is constant / I ₂ (concentration) doesn't affect rate / rate of change of I ₂ (concentration) doesn't change with time	(1) ation) (1)	Just 'straight line' Or just 'gradient is constant' [Thiosulfate] or volume of Thiosulfate is proportional to time without reference to iodine Reference to half life [I ₂] is proportional to rate	2
	Mark independently			

Question Number	Acceptable Answers	Reject	Mark
19 (e)	Measuring cylinder quicker / Measuring cylinder can measure a variety of volumes (1) ALLOW Measuring cylinder can be plastic so unbreakable Comment on lower cost of measuring cylinder if qualified with a reason Pipette more accurate / (graduated) pipette more precise / pipette can be used to extract samples from a reaction mixture (for titration) (1)	Just "Measuring cylinder easier to use" Easier to clean Measuring cylinder can be used for large volumes Pipette more reliable Ignore references to easier	2

Question Number	Acceptable Answers	Reject	Mark
19 (f) (i)	To keep (total) volume constant / to make the (total) volume 32 cm ³ / to make concentrations	To keep concentrations	1
	proportional to volume of reactant	constant	

Question Number	Acceptable Answers	Reject	Mark
19 (f) (ii)	First order wrt propanone with explanation (1) First order wrt hydrogen ions/ sulfuric acid, with explanation (1) (1) Explanation can be in terms of experiments 1 and 3 (propanone) or 1 and 2 (acid) and can be in terms of concentration or volume		3
	Rate = $k[CH_3COCH_3][H^+]([I_2]^0) /$ Rate = $k[CH_3COCH_3][H_2SO_4]([I_2]^0)$ (1)	Expressions without rate or k Expressions with <i>K</i> c	
	ALLOW names of propanone and sulfuric acid in place of formulae Ignore case of k in rate equation	R / r for rate	
	Ignore order wrt iodine even if wrong Third mark is consequential if incorrect orders of propanone and acid given.		

TOTAL FOR SECTION B = 50 MARKS

Section C

Question Number	Acceptable Answers	Reject	Mark
20 (a)	Q: O-H ALLOW OH – O – H (1)	Just 'alcohol' — OH	2
	R: C=O $ALLOW - C = O$	Just 'carbonyl' - C O C-O	
	 - C = O (1) IGNORE names ACCEPT answers written on spectrum 		

Question Number	Acceptable Answers	Reject	Mark
20 (b) (i)	Y = methanol / CH ₃ OH (1) Any two of the following: Molecular ion / M^+ / M_r / CH ₃ OH ⁺ / methanol = 32 CH ₃ ⁺ = 15 CH ₃ O ⁺ / CH ₂ OH ⁺ = 31 CHOH ⁺ / CH ₂ O ⁺ = 30 COH ⁺ = 29 CO ⁺ = 28 (1)		2
	Charges not required TE in second mark for two correct possible peaks from an incorrect compound.		

Question Number	Acceptable Answers		Reject	Mark
20 (b) (ii)	Two (1) This mark may be scored if two shifts are Any two shifts correctly identified: -OH at 2.0-4.0 / any value in this range H-C-O at 3.0- 4.2 / any value in this range H in CH ₃ OH at 3.39 (ppm) Allow TE for ethanol with three peaks and three correct shift values: -OH at 2.0-4.0 / any value in this range H-C-O at 3.0- 4.2 / any value in this range CH in an alkane at 0.1-1.9	e (1) (1)	CH in an alkane at 0.1-1.9 Just CH₃ OH at 3.39	2

Question Number	Acceptable Answers	Reject	Mark
20 (c) (i)	Z contains two -OH/ one alcohol + one acid		1
	ALLOW two alcohol groups / is a diol		

Question Number	Acceptable Answers	Reject	Mark
20 (c) (ii)	Z is an acid / contains -COOH / contains -CO ₂ H/ contains a carboxylic acid group / contains H ⁺		1

Question Number	Acceptable Answers	Reject	Mark
20 (c) (iii)	Z is a secondary alcohol/ a ketone is formed from Z / Z contains -C-OH (1) H	Z is a ketone	1

Question Number	Acceptable Answers	Reject	Mark
20 (c) (iv)	(lodoform produced) so Z contains CH_3 $CH(OH)$ -		1
	TE if Z is identified as a ketone in (iii): Z contains CH ₃ C=O / Z is a methyl ketone		

Question Number	Acceptable Answers	Reject	Mark
20 (d)	Answers will be based on several pieces of information (molecular formula, products of ester hydrolysis, answers to (c)) which may be contradictory if errors have been made. ALLOW TE marks for formulae which are chemically possible (ie no 5 bonded carbons etc) and based on most of the deductions but not necessarily all . Z is CH ₃ CH(OH)CH ₂ COOH (1) Stand alone mark ALLOW TE for an acid with OH in wrong position in Z if oxidation product identified as aldehyde TE for Z = CH ₃ COCH ₂ COOH if identified as ketone in (iii) X is CH ₃ CH(OH)CH ₂ COOCH ₃ (1) Stand alone mark TE for a methyl ester of Z		2

Question Number	Acceptable Answers	Reject	Mark
21 (a) (i)	Transesterification	Substituted	1
	Ethanol transesterification	esterification	

Question Number	Acceptable Answers	Reject	Mark
21 (a) (ii)	To prevent hydrolysis/ to stop fatty acids forming / to stop breakdown of esters / water reacts with esters/ water is a better nucleophile than ethanol	To dilute ethanol Ethanol would react with water A reaction would occur (unspecified)	1

Question Number	Acceptable Answers	Reject	Mark
21 (b)	 (Vegetable) Fats/ oils are renewable (crude oil is not) / biodiesel comes from a renewable source / doesn't use up fossil fuel resources/ carbon footprint is less / (closer to) carbon neutral / growing vegetables absorb CO2 If more than one answer is given, and one is incorrect, no mark Ignore comments on biodegradability 	Just "made from plants" Just "crude oil is not sustainable" Less polluting produces less greenhouse gases / less CO ₂ Burns more cleanly Requires less energy for production	1

Question Number	Acceptable Answers	Reject	Mark
21 (c)	Substances to be separated have different (force of) attraction to / affinity for / solubilities in / adsorption to one or both of the mobile and stationary phases OWTTE (1 ALLOW absorption	times without a reason why	5
	GC: mobile phase a (inert / unreactive) gas OR GC: mobile phase nitrogen / helium / argon / other named inert gas (1) GC: Stationary phase a liquid (on an (inert) soli / a solid (1) HPLC: stationary phase a solid / silica (1) HPLC: mobile phase a liquid (1)	d))	

TOTAL FOR SECTION C = 20 MARKS

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publications@linneydirect.com</u> Order Code UA026200 January 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH