

A-LEVEL PHYSICS B: PHYSICS IN CONTEXT

PHYB4 – Physics Inside and Out Mark scheme

2455 June 2014

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2014 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

COMPONENT NAME: Unit 4 – Physics Inside and Out

COMPONENT NUMBER: PHYB4

Question	Part	Sub	Marking guidance	Mark	Mark	Comment
		part		type		

1	(a)	(i)	Idea of balance	B1	2	Not balancing torques
			Prevent (lateral) forces /stress/strain/bending at the axle	B1		
						Look out for energy saving
			To make centre of mass close to the axis			answers

1	(a)	(ii)	Heavier / higher mass/higher weight than gondola	B1	2	
				B1		
			Moments/product of mass and distance should be the same / moment of inertia the			
			same			

1	(a)	(iii)	Angular acceleration = 0.54 (rad s ⁻²) or $1.4/2.6$	C1	3	
				C1		
			Use of $T = I \alpha$ (1.9 x 10 ⁵ x their angular acceleration)	A1		
			1.0(2) x 10 ⁵ (N m)			

1	(a)	(iv)	Use of $mr\omega^2$ 86 x 6.8 x 1.4 ²	C1	2	If equation quoted condone not
						showing the squaring in
			1150 N (allow 1100 or 1200)	A1		substitution

1	(a)	(v)	W = 86 x 9.81 / 844 (N)	C1	2	
			Or attempts to subtract W from their (a) (iv); e.g. using 10 for g			
			306 (N) their (a)(iv) - 844 ecf	A1		

1	(a)	(vi)	reaction greatest at the bottom of the circle / least at top	B1	2	
			approx 2000N at bottom and 300N at top or idea of adding and subtracting <i>mg</i> to/from centripetal force correctly	B1		
			Reaction half way up -1150 N or $=mv^2/r$ ANY 2			

1	(b)	(i)	Use of $0.5I\omega^2 \ 0.5 \ge 270 \ge 5.3^2$	C1	2	If formula quoted condone 5.3
						not squared for C1
			3790 (J)	A1		

1	(b)	(ii)	Reference to two of the (independent) motions/forces I.e. Rotation horizontally(roundabout motion): rotation around axis perpendicular to the bed: Vertical motion (up and down) of cars on the undulating bed	C1	3	Rotation may be referred to in terms of centripetal force(but not when referring to the bed)
			Reference to all three component	M1		
			idea of resultant force being the (vector) addition of these forces or resultant force is variable and unpredictable at different positions	A1		

A1

M1

A1

1	(b)	(iii)	smaller passengers reduce/ have smaller moment of inertia	B1	2	
			(angular) accelerations bigger/dangerous (angular) accelerations	B1		
			restraints designed for larger riders condone reference to the need to be strapped in for safety ANY 2			
2		(i)	$GMm/r^2 = m\sqrt{2}/r$	B1	3	Line of 6 67 loads to 7720
2	(a)	(i)		B1	3	Use of 6,67 leads to 7720
			$v = (GM/r)^{1/2}$ or $(6.7 \times 10^{-11} \times 6.0 \times 10^{24})^{1/2}$ condoning powers of ten			
			(6.71×10^6)	B1		
			7740 or 7720 seen			
		(11)		5.		
2	(a)	(ii)	3.29 or 3.3 x 10 ¹² (J)	B1	1	
2	(a)	(iii)	Substitution into $\Delta E_p = GMm(1/r_1 - 1/r_2)$ seen condoning powers of 10 and wrong values for r	C1	5	Use of <i>mgh</i> can score last two marks(3.7 x ,,,)
			all correct: $6.67 \times 10^{-11} \times 6.0 \times 10^{24} \times 1.1 \times 10^{5} (\underbrace{1}_{6.38 \times 10^{6}} - \underbrace{1}_{6.71 \times 10^{6}})$	C1		Condone bracket either way

3.4 x 10¹¹ seen

adds their answer from a(ii)

3.64 x 10¹² (J) **ecf** for incorrect calculation of ΔE_{p} or (a)(ii)

	-			T		
2	(a)	(iv)	Greater mass (at launch) due to fuel / boosters	B1	2	
			Engines inefficient or states cause of inefficiency (internal energy/KE of ejected fuel/heating of surroundings	B1		
			Energy needed so that fuel/boosters gain PE			
			Energy needed so that fuel/boosters gain KE ANY 2			
2	(b)	(i)	takes data from graph = $(8.9 \pm 0.1) \times 10^8 (J \text{ kg}^{-1})$	M1	2	
			$(9.8 \pm 0.1) \times 10^{13}$ (J)	A1		
2	(b)	(ii)	energy needed/work has to be done to change speed/ momentum / KE of the shuttle	B1	2	
			correct orbital speed will be $\sqrt{\frac{GM}{r}}$ where <i>M</i> is the mass of PC	B1		This option must be consistent with the first B1 statement
			Speed must be such as to prevent the shuttle being pulled into PC			
			At the required orbit radius velocity must be in the correct direction/perpendicular to the radius at the required radius			
			PE + KE or KE in orbit must be 0.5×10^8 J			
			PE + KE must be less than zero			
			1 st B1 plus any one of the above			
		•				
3	(a)	(i)	1 T when force is 1 N on conductor of length 1 m when current is 1 A	B1	2	Condone minor communication

deviations

	magnetic field is perpendicular to conductor/current	B1	Well expressed definition with
			condition

3	(a)	(ii)	Force given by (Fleming's) LHR	B1	3	
			Current and field perpendicular so force on electrons is perpendicular to electron movement /OWTTE	B1		
			Force on current carrying conductor is to the left / electron drift/move to the left	B1		
			Charge imbalance between the two sides /More electrons one side than the other OWTTE ANY 3			

3	(a)	(iii)	magnetic materials /iron/steel/ magnetic objects	B1	2	
			Anomaly / object where magnetic field or voltage differs from norm ANY 2	B1		

3	(b)	The marking scheme for this question includes an overall assessment for the quality of written communication (QWC). There are no discrete marks for the assessment of QWC but the candidate's QWC in this answer will be one of the criteria used to assign a level and award the marks for this question. Descriptor – an answer will be expected to meet most of the criteria in the level descriptor. Level 3 – good -claims supported by an appropriate range of evidence -good use of information or ideas about physics, going beyond those given in the question -argument well-structured with minimal repetition or irrelevant points -accurate and clear expression of ideas with only minor errors of grammar, punctuation and spelling Level 2 – modest -claims partly supported by evidence, -good use of information or ideas about physics given in the question but limited beyond this the argument shows some attempt at structure -the ideas are expressed with reasonable clarity but with a few errors of grammar, punctuation and spelling Level 1 – limited -valid points but not clearly linked to an argument structure -limited use of information about physics -unstructured -errors in spelling, punctuation and grammar or lack of fluency Level 0 -incorrect, inappropriate or no response		6			
---	-----	---	--	---	--	--	--

	ļ	
Production of induced current in the buried object		
current in (transmitter) coil produces mag field		
magnetic field is alternating		
metal material is in the field		
Faraday's law states		
emf induce in conducting material when field changes		
Eddy current in material		
Eddy current produces magnetic field		
Detection of the induced emf due to buried object		
Pulsed current / magnetic field switches off		
eddy current decay produces changing magnetic field		
Detector coil detects (changing) magnetic field from metallic object		
emf induced in detector coil.		
Induced emf measured.		
Use of sound or meter for detection		
Strength / duration of pulse indicates depth /. size of buried metallic object		
Level 3		
Answers should address both these in detail. The account may omit some aspects		
of the process but overall it should be a coherent description of the operation. There		
may be a useful well labelled diagram.		
Level 2		
This is likely to have some omissions which leave questions as to how detection is		
achieved but will contain most of the key ideas particularly about the process of		
producing induced emfs. It may be vague in terms of the use of pulses and the link		
between eddy current and the detected field.		
The diagram will have some use showing current loops but lack clarity.		
Level 1		
This is likely to be a superficial attempt with at least some attempt to explain the		
production of induced emfs and that the induced fields are then detected by another		
induced emf process. It may lack coherence		
Level 0		
This will contain no physics of relevance or inaccurate physics.		
This will contain no physics of relevance or inaccurate physics.		

4	(a)	(i)	Substitutes into $pV=nRT$ or rearranges to $n = pV/RT$	C1	3	For substitution condone power of 10 error
			Converts to kelvin; 3473 seen or 3200 +273	C1		minor misreads of data Use of temperature in °C
			8565 (mol) / 8560 /8570 / 8600	A1		
4	(a)	(ii)	Change is adiabatic (if thinking instant it leaves) Q =0	B1	4	
			Q is negative (if small) as gas cools(if thinking a little afterwards)			
			gas does work as it expands	B1		
			W is negative	B1		
			$(\Delta U = Q + W)$ Internal energy falls	B1		
4	(a)	(iii)	More expansion could have taken place and provide more thrust / higher exhaust speed / higher exhaust momentum	B1	1	
			Energy wasted by gas continuing to expand after leaving the rocket Or gas does less work than it could so less thrust			
4	(h)		m Vf /	01	4	Or aquivalant
4	(b)		Rearranges rocket equation to give $\frac{m_f}{m_o} = e^{-\frac{v_f}{v_e}}$ or $\ln \frac{m_f}{m_o} = -\frac{v_f}{v_e}$	C1	4	Or equivalent
			Substitutes in any form of rocket equation eg 6400=3800 $\ln(m_o/m_f)$	C1		
			0.186 or 0.814 or 5.38 or $\left(1 - \frac{1}{5.38}\right)$ or $(1 - 0.186)$	C1		
			81.4%	A1		

4 (c) (i) Higher exhaust speeds / allows higher speed for same fuel mass or same speed	or B1	1	
--	-------	---	--

		1		1	-	
			less fuel /less fuel used			
4	(c)	(ii)	Can't be used in atmosphere / large energies needed / low thrust / low acceleration	B1	1	
		/			•	- -
4	(c)	(iii)	Small adjustments / long distance flights/low acceleration propulsion in space	B1	1	
			1	-		1
5	(a)	(i)	Deceleration of electrons (when they hit target)	B1	3	
			Emission of photons	B1		
			Can lose energy in one collision or many / can lose any amount of energy in each	B1		Collision must be mentioned
			collision (up to max available)			somewhere in the answer for
						this mark
			Bremsstrahlung mentioned			
			ANY 3			
r		- [T	- <u>r</u>	I
5	(a)	(ii)	Selects150 keV	C1	3	
			10	C1		
			correctly changes to J / multiplies by 1.6 x 10 ⁻¹⁹ / rearranges to give $\lambda = hc/E$	A1		
			8.25 or 8.3 x 10 ⁻¹² m			
L		1				
5	(b)		Uses $I = I_0 e^{-150 \times 0.035}$ condoning powers of 10	C1	3	
	, í			C1		
			-5.25 (=150 x 0.035) or 0.0052(5) (=e ^{-150 x 0.035}) seen	A1		
			0.52% or 0.525%			

5	(c)		Contrast medium provides greater absorbance/attenuation of x rays (than body tissue)	B1	2	
			Higher absorption coefficient			
			Contrast medium goes to particular area/ area of interest / highlights a particular			
			area	B1		
<u>^</u>	(2)	1:	Magnetic field	B1		
6	(a)	1	Magnetic field	BI	2	
			Varies (linearly) in strength across the body/in different parts of the body	B1		
6	(a)	ii	Idea that protons precess at particular / Lamor frequency	B1	3	
			Frequency depends on/is proportional to the B field	B1		
			rf waves cause resonance only where they match Lamor frequency	B1		
6	(a)	III	rf waves switched off	B1	3	
			Precession decays/precessing protons relax	B1		
			Protons radiate energy as radio waves	B1		
			Intensity depends on number of hydrogen atoms present ANY 3			
					1	
6	(a)	iv	Change rf to different frequency	B1	2	
			(Each) rf produces image of 1 slice/cross-section	B1		

(Computer constructs) whole body image from many individual slices ANY 2	

6	(b)	Advantages of MRI:	B1	2	
		doesn't involve harmful/ionising radiation/low energy photons (condone radiation)			
		can image tissue within bone			
		better contrast between tissues			
		condone resolution			
		Disadvantages of MRI:	B1		
		cost			
		time taken for scan/time to wait for a scan			
		limited patient size			
		problems with metals (eg hip replacements / orthopaedic pins)			
		some patients claustrophobic			
		patient may have to be sedated			

7	(a)	$\sin c = 1/n \text{ or } \sin c = n_2/n_1 (=v_1/v_2)$	B1	3	
		n = OR 3000/1800 or 1.67 OR sin <i>c</i> = 1800/3000	B1		
		36.9°	A1		

7	(b)	5.44 x 10 ⁻³ s	B1	1	
7	(c)	PQ =RS = 3.26 m	B1	5	
		2.6 tan37 or 3,26 sin37 or 1.96 seen or	C1		Or alternative geometry
		QR = 5.88 m i.e QR = 9.8 - (2 x 1.96)	C1		
		t = (2 x their 3.26/1800) + (their 5.88/3000) { 0.00362 +0.00196 if correct}	C1		
		5.58×10^{-3} (s) cao to 2 or 3 sf	A1		

8	(a)	Percentage uncertainty in timing (0.00001/0.09)x100 or 0.011% Or uncertainty in timing = 1/9000 or 0.00011	B1	3	
		Appreciation that % uncertainty or absolute uncertainty in <i>t</i> has to be doubled	B1		
		0.042 seen	B1		
	(b)	0.042% of 9.81 / 3.9 x10 ⁻³ / 4.0 x10 ⁻³ / 4.1 x10 ⁻³ (m s ⁻²)			

8	(b)	0.042% of 9.81 / 3.9 x10 ⁻³ / 4.0 x10 ⁻³ /4.1 x10 ⁻³ (m s ⁻²)	M1	2	
		or $g = 987$ gal or 1 gal = 0.001 N kg ⁻¹⁻			
			A1		
		0.39 / 0.40 / 0.41 gal Allow 1 sf			