

SPECIMEN F

GENERAL CERTIFICATE OF SECONDARY EDUCATION TWENTY FIRST CENTURY SCIENCE

A172/01

Duration: 1 hour

CHEMISTRY A

Unit A172: Modules C4, C5, C6 (Foundation Tier)

Candidates answer on the question paper A calculator may be used for this paper

OCR Supplied Materials:

None

Other Materials Required:

- Pencil
- Ruler (cm/mm)

Candidate Forename			Candidate Surname				
Centre Number			Candidate Nur	mber			

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Write your answer to each question in the space provided, however additional paper may be used if necessary.

INFORMATION FOR CANDIDATES

- Your quality of written communication is assessed in questions marked with a pencil ().
- A list of qualitative tests for ions is printed on page 2.
- The Periodic Table can be found on the back page.
- The number of marks for each question is given in brackets [] at the end of the question or part question.
- The total number of marks for this paper is 60.
- This document consists of **20** pages. Any blank pages are indicated.

For Examiner's Use				
	Max	Mark		
1	4			
2	2			
3	3			
4	10			
5	8			
6	5			
7	3			
8	3			
9	5			
10	2			
11	8			
12	7			
TOTAL	60			

TWENTY FIRST CENTURY SCIENCE DATA SHEET

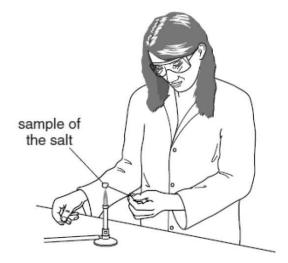
Qualitative analysis

Tests for ions with a positive charge

lon	Test	Observation
calcium Ca ²⁺	add dilute sodium hydroxide	a white precipitate forms; the precipitate does not dissolve in excess sodium hydroxide
copper Cu ²⁺	add dilute sodium hydroxide	a light blue precipitate forms; the precipitate does not dissolve in excess sodium hydroxide
iron(II) Fe ²⁺	add dilute sodium hydroxide	a green precipitate forms; the precipitate does not dissolve in excess sodium hydroxide
iron(III) Fe ³⁺	add dilute sodium hydroxide	a red-brown precipitate forms; the precipitate does not dissolve in excess sodium hydroxide
zinc Zn ²⁺	add dilute sodium hydroxide	a white precipitate forms; the precipitate dissolves in excess sodium hydroxide

Tests for ions with a negative charge

lon	Test	Observation
carbonate CO ₃ ²⁻	add dilute acid	the solution effervesces; carbon dioxide gas is produced (the gas turns lime water from colourless to milky)
chloride C <i>l</i> ⁻	add dilute nitric acid, then add silver nitrate	a white precipitate forms
bromide Br ⁻	add dilute nitric acid, then add silver nitrate	a cream precipitate forms
iodide I ⁻	add dilute nitric acid, then add silver nitrate	a yellow precipitate forms
sulfate SO ₄ ²⁻	add dilute acid, then add barium chloride or barium nitrate	a white precipitate forms


Answer **all** the questions.

1 The table shows the melting points of some elements in Group 1.

element	melting point in °C
lithium	180
sodium	97
potassium	
rubidium	39

(a)	Describe the pat	ttern shown b	y the data in th	e table.		
(b)	Use the data in t	the table to pr	edict the melti	ng point of pota	assium.	
	Draw a ring ard	ound the corre	ect answer.			
		15°C	39°C	63°C	75°C	[1]
(c)	Erica searches o	on the interne	t to find out the	e melting point	of potassium.	
	She finds data fr five times.	om an experi	ment in which	the melting po	int of potassium was	s measured
	The five results	are all differer	nt.			
	Put ticks (✓) in t	he boxes nex	t to the two sta	atements that e	explain this.	
	Websites are	always wron	g.			
	We can neve the true value		any measurer	ment tells us		
	The apparatu have been fa		e the measure	ments must		
	If we make se these are like		rements of any	quantity,		
						[2]
						[Total: 4]

2 Eve tests some salts by doing a flame test.

Eve heats a sodium salt. She sees that it gives off a coloured light.

She looks at the spectrum of light through a spectroscope.

She sees some yellow lines.

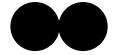
	yellow lines
Eve	e then heats a potassium salt and looks at the spectrum of light it gives off.
Wri	ite down one similarity and one difference between the two spectra that Eve sees.
	[2]

[Total: 2]

3 The table shows information about some atoms.

name	group in Periodic Table	electron arrangement	number of electrons in outer shell
lithium	1	2.1	1
sodium	1	2.8.1	
fluorine	7	2.7	7
chlorine	7	2.8.7	7

			[Total: 3
			[1]
	(ii)	Explain your answer to part (i).	
	/ **>	5 1: (A)	
			answer[1]
	(i)	Suggest how many electrons iodine has	in its outer shell.
(b)	lodi	ine is another element in Group 7.	
			•
			answer[1]
(a)	Hov	w many electrons does sodium have in its	outer shell?


- 4 This question is about the Group 7 elements, known as the halogens.
 - (a) The symbol for a bromine molecule is

Br₂

Which of the diagrams shows a bromine molecule?

Draw a (ring) around the correct answer.

[1]

- (b) Hot sodium metal will react with halogens in the gas state.
 - (i) A piece of hot sodium metal is put into a jar of chlorine gas.

A fast reaction happens and a white solid salt forms.

Write a word equation for this reaction.

F 4 7	
111	
 r.1	

(ii) Sodium reacts with other halogens too.

The table shows what happens when hot sodium is put into jars containing different halogen gases.

halogen gas	appearance of halogen gas at start	time for reaction to finish in seconds	appearance of product at end
chlorine	pale green	5	white solid
bromine			
iodine	purple	15	white solid

Complete the table to describe what you would see when sodium is put into a jar containing bromine gas. [2]

(c) Alex makes some cards to show the properties of chlorine and bromine.

State: gas at room temperature and

pressure

Boiling point: -35 °C

Hazard: Toxic

Notes:

Chlorine is a halogen. It is the **second** most reactive element in Group 7.

Bromine

State: liquid at room temperature and

pressure

Boiling point: 59 °C

Hazard: Toxic and corrosive.

Notes:

Bromine is a halogen. It is the **third** most reactive element in Group 7.

Alex wants to use either chlorine or bromine in an experiment at school.

She wants to choose the safest chemical.

Discuss which of these chemicals Alex should choose. Give reasons for your choice.

The quality of written communication will be assessed in your answer to this question.
[6]

[Total: 10]

5 The table shows some properties of a number of metals. For each property the metals are listed from highest value to lowest value.

	melting point	electrical conductivity	density	resistance to corrosion	cost per tonne
highest value iron gold		gold	gold	gold	
	copper	copper	copper	aluminium	copper
♦	gold	aluminium	iron	copper	aluminium
lowest value	aluminium	iron	aluminium	iron	iron

Electricity is distributed around the country along metal transmission lines.
These lines are hung from pylons.
Which metal would be the best choice for the electrical transmission lines?
Explain fully the reasons for your choice.
The quality of written communication will be assessed in your answer to this question.
ro:

© OCR 2011 SPECIMEN

(a)

(b) The sentences below show some uses of gold.

Each use depends on a different property.

Draw straight lines to connect each use to the property that allows this use.

use	property
Car air bags have gold electrical contacts.	Gold is very unreactive.
Jewellery can be made by shaping gold wires.	Gold can be bent easily.
Some people have gold fillings in their teeth.	Gold is a good conductor.

[2]

[Total: 8]

6 Most electrical wiring is made from copper. The copper used to make the wires is obtained by mining copper ores from the ground.

The photograph shows a copper mine.

© istockphoto.com

A mining company wants to open a new copper mine.

Tests at the site for the new mine show that the company will be able to recover 40 g of copper metal from every kilogram of mined rock.

((a)	What	percentage	of the	mined	rock is	copper?
١.	~,		po. 00ago	00			OOPPO.

answer =	 %	[1]

(b) Copper is present in the rock as cuprite, a copper ore with the formula Cu₂O.

What is the percentage mass of copper in cuprite?

Relative atomic masses are given in the Periodic Table on the back page.

Show your working.

answer =		%	[2]
----------	--	---	-----

(c) Suggest why there is a difference between your answers for parts (a) and (b).

(d)	Cuprite, Cu ₂ O, is an oxide of copper.
	Suggest how copper could be extracted from cuprite.
	[1]
	[Total: 5]

7 The table shows some information about five different chemicals.

The chemicals are shown by the letters A, B, C, D and E.

chemical	melting point in °C	boiling point in °C	does it conduct electricity when it is a solid?	does it conduct electricity when it is a liquid?
Α	-95	69	no	no
В	1261	2239	no	yes
С	1240	2100	yes	yes
D	1650	2230	no	no
E	-138	0	no	no

	C	1240		2100)	/es	yes	
	D	1650		2230		no	no	
	Е	-138		0		no	no	
(a)		oxide is a compoun electricity in either th				and boiling	point. It does not	
	Which che	emical is most likel	y to be sil	licon dioxide	?			
	Put a (ring	around the corre	ct answei	r.				
			_		_	_		
		Α	В	С	D	E		
								[1]
(b)	Chemical	C is a metal.						
()		itement describes h	now the d	lata in the tal	hle show th	nis?		
	Pul a lick	(✓) in the box next	to the cc	medi answe	Ι.			
	Chem	nical C has a high r	melting po	oint.				
	Chem	nical C has a high b	ooiling po	int.				
	Chem	nical C conducts el	ectricity w	vhen it is a s	olid.			
	Chem	nical C conducts el	ectricity w	vhen it is a li	quid.			
								[1]

(c) Which of the chemicals is an ionic compound?

Put a (ring) around the correct answer.

A B C D E

[1]

[Total: 3]

8 Diamond and graphite are two forms of carbon.

The table gives some information about diamond and graphite.

	melting point in °C	density in g/cm ³	hardness	does it conduct electricity?
diamond	3823	3.51	very hard	no
graphite	3925	2.25	soft	yes

(a)	Use ideas about the bonding in diamond and graphite to explain the difference in their electrical conductivity.
	[2
(b)	Which form of carbon could be used in the middle of a pencil?
	Use ideas about properties to explain why this form of carbon is suitable for this purpose.
	[1
	[Total: 3

9 John knows that there is more than one type of salt.
He makes some salts using different reactants.

(a) Draw a straight line to link each set of **reactants** to the **salt formed**.

	reactants	salt formed
	sodium hydroxide and hydrochloric acid	magnesium chloride
	magnesium hydroxide and hydrochloric acid	sodium chloride
	magnesium oxide and sulfuric acid	magnesium sulfate
		[2
		- ·
(b)	The salt that John makes is dissolve	ed in a flask of water.
` '	Solid impurities are in the bottom of	f the flask.
	Explain how he could make clean, o	
	, .	,,,

.....[3]

[Total: 5]

10 Thi	is question is about solids and liquids. Which of these chemicals will be a solid at room temperature and pressure?	
()	Put a (ring) around the correct answer.	
	hydrochloric acid carbon dioxide hydrogen citric acid	
		[1]
(b)	Baking powder contains small grains of a solid acid and small grains of a solid alkali.	
	The acid in baking powder does not react with the alkali until water is added.	
	What does the water do to the acid?	
	Put a tick (\checkmark) in the box next to the correct answer.	
	Water makes the acid disappear.	
	Water lets the acid dissolve and produce H ⁺ (aq) ions.	
	Water lets the acid dissolve and produce OH ⁻ (aq) ions.	
	Water makes the acid more concentrated.	
		[1]

[Total: 2]

11 Bobby reacts small pieces of magnesium with acid. The reaction produces a gas.

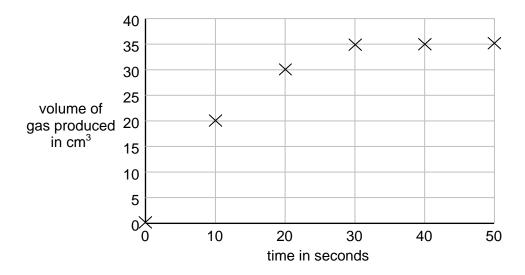
Bobby collects the gas in an upturned container filled with water.

The gas displaces an equal volume of water from the container.

When all of the magnesium has reacted, 35 cm³ of gas has been produced.

(a) Bobby has the following pieces of apparatus in the laboratory.

50 cm³ beaker
100 cm³ beaker
500 cm³ beaker
25 cm³ measuring cylinder
50 cm³ measuring cylinder
100 cm³ measuring cylinder


Which of these pieces of apparatus should Bobby have used to collect and measure the gas?

Explain your choice.

ſ:	
2 [.]	

(b) Bobby measured the amount of gas given off every 10 seconds.

He plotted these data on a piece of graph paper.

(i) Complete the graph by drawing the line of best fit.

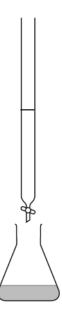
© OCR 2011 SPECIMEN

[1]

(ii)	Bobby calculates what the rate of reaction was at different times during the experiment.
	He does this by calculating how much gas was produced per second.
	Prove that the rate of reaction was fastest during the first ten seconds of the experiment.

[2]

(c) Bobby does the experiment a further four times.


Each time he makes **one** change to the way he does the experiment.

experiment	volume of gas collected after 10 s, in cm ³	volume of gas collected after 30 s, in cm ³	volume of gas collected after 50 s, in cm ³
original experiment	20	35	35
experiment A	35	40	40
experiment B	30	35	35
experiment C	20	30	35
experiment D	25	35	35

	[Total: 8]
	[3]
Explain your answer.	
In which experiment did Bobby use a larger mass of magnesium pieces?	

12 Mary carries out an acid / alkali titration.

She puts 25.0 cm³ of alkali solution in a conical flask and does a rough titration.

Mary then does an accurate titration.

sno	ould tak	ke.										
	The c	quality (of writter	n commi	unicatio	n will be	assess	ed in yo	ur ansv	ver to tl	his que:	stion.
	·										·	
•••••												
•••••												

(a) What are the main stages in carrying out an accurate titration? Include any readings Mary

(b) The acid and alkali get slightly warmer as they react.

Put a (ring) around the correct name for this type of reaction.

electrolysis endothermic exothermic thermal

[1]

[Total: 7]

[Paper Total: 60]

END OF QUESTION PAPER

Copyright Information:

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Periodic Table

1	2					·		-				3	4	5	6	7	0
				Key			1 H hydrogen 1										4 He helium 2
7 Li lithium 3	9 Be beryllium 4		ato	ve atomic mic sym name (proton) r	bol							11 B boron 5	12 C carbon 6	14 N nitrogen 7	16 O oxygen 8	19 F fluorine 9	20 Ne neon 10
23 Na sodium 11	24 Mg magnesium 12											27 Al aluminium 13	28 Si silicon 14	31 P phosphorus 15	32 S sulfur 16	35.5 Cl chlorine 17	40 Ar argon 18
39 K potassium 19	40 Ca calcium 20	45 Sc scandium 21	48 Ti titanium 22	51 V vanadium 23	52 Cr chromium 24	55 Mn manganese 25	56 Fe iron 26	59 Co cobalt 27	59 Ni nickel 28	63.5 Cu copper 29	65 Zn zinc 30	70 Ga gallium 31	73 Ge germanium 32	75 As arsenic 33	79 Se selenium 34	80 Br bromine 35	84 Kr krypton 36
85 Rb rubidium 37	88 Sr strontium 38	89 Y yttrium 39	91 Zr zirconium 40	93 Nb niobium 41	96 Mo molybdenum 42	[98] Tc technetium 43	101 Ru ruthenium 44	103 Rh rhodium 45	106 Pd palladium 46	108 Ag silver 47	112 Cd cadmium 48	115 I n indium 49	119 Sn tin 50	122 Sb antimony 51	128 Te tellurium 52	127 I iodine 53	131 Xe xenon 54
133 Cs caesium 55	137 Ba barium 56	139 La* lanthanum 57	178 Hf hafnium 72	181 Ta tantalum 73	184 W tungsten 74	186 Re rhenium 75	190 Os osmium 76	192 I r iridium 77	195 Pt platinum 78	197 Au gold 79	201 Hg mercury 80	204 Tl thallium 81	207 Pb lead 82	209 Bi bismuth 83	[209] Po polonium 84	[210] At astatine 85	[222] Rn radon 86
[223] Fr francium 87	[226] Ra radium 88	[227] Ac* actinium 89	[261] Rf rutherfordium 104	[262] Db dubnium 105	[266] Sg seaborgium 106	[264] Bh bohrium 107	[277] Hs hassium 108	[268] Mt meitnerium 109	[271] Ds darmstadtium 110	[272] Rg roentgenium 111	Elements with atomic numbers 112-116 have been reported but not fully						t fully

^{*} The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.