Centre Number			Candidate Number			F
Surname						
Other Names						
Candidate Signature						
						Q

General Certificate of Education Advanced Level Examination June 2011

Physics A

PHYA5/1

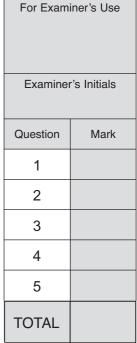
Unit 5 Nuclear and Thermal Physics Section A

Monday 27 June 2011 9.00 am to 10.45 am

For this paper you must have:

- a calculator
- a ruler
- a question paper/answer book for Section B (enclosed).

Time allowed


• The total time for both sections of this paper is 1 hour 45 minutes. You are advised to spend approximately 55 minutes on this section.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Answers written in margins or on blank pages will not be marked.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this section is 40.
- You are expected to use a calculator where appropriate.
- A Data and Formulae Booklet is provided as a loose insert in Section B.
- You will be marked on your ability to:
 - use good English
 - organise information clearly
 - use specialist vocabulary where appropriate.

Section A

The maximum mark for this section is 40 marks. You are advised to spend approximately 55 minutes on this section.

The fissile isotope of uranium, ${}^{233}_{92}$ U, has been used in some nuclear reactors. 1 It is normally produced by neutron irradiation of thorium-232. An irradiated thorium nucleus emits a β^{-} particle to become an isotope of protactinium. This isotope of protactinium may undergo β^- decay to become $^{233}_{92}$ U. Complete the following equation to show the β^{-} decay of 1 (a) protactinium. $Pa \rightarrow^{233}_{92}U + \beta^- + \dots$ (2 marks) Two other nuclei, **P** and **Q**, can also decay into $^{233}_{92}$ U. 1 (b) **P** decays by β^+ decay to produce $^{233}_{92}$ U. **Q** decays by α emission to produce $^{233}_{92}$ U. **Figure 1** shows a grid of neutron number against proton number with the position of the $^{233}_{92}$ U isotope shown. On the grid label the positions of the nuclei **P** and **Q**. Figure 1 neutron 143 number Ν 142 ²³³₉₂U 141

140

139

90

91

92

93

94 proton number

Ζ

(2 marks)

1 (c) A typical fission reaction in the reactor is represented by

$^{233}_{92}\text{U} + ^{1}_{0}\text{n} \rightarrow ^{91}_{36}\text{Kr} + ^{139}_{56}\text{Ba} + x \text{ neutrons}$

1 (c) (i) Calculate the number of neutrons, x.

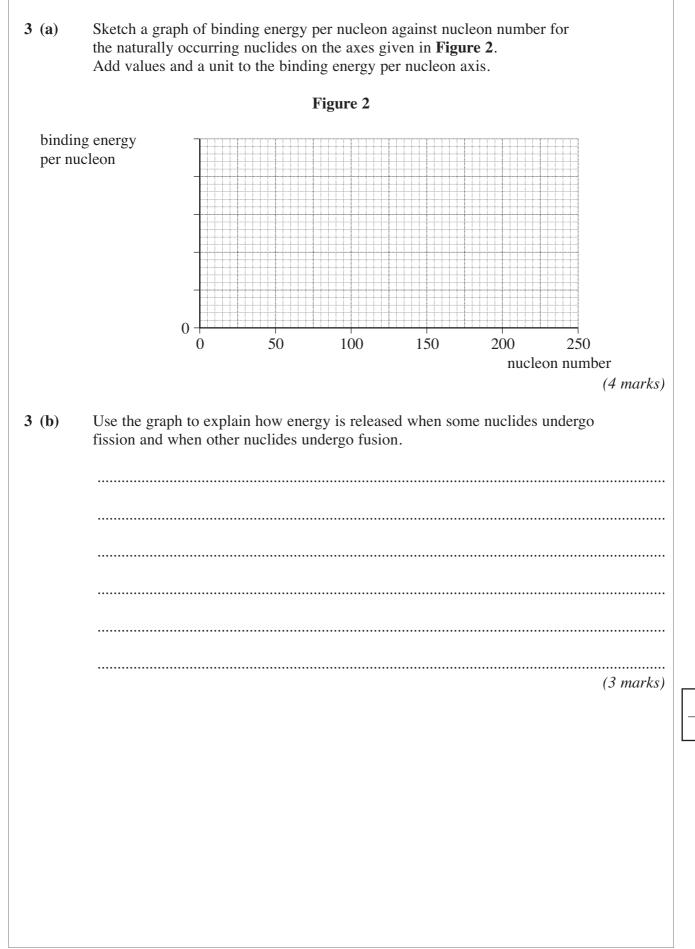
answer =neutrons (1 mark)

1 (c) (ii) Calculate the energy released, in MeV, in the fission reaction above.

mass of neutron = 1.00867 umass of ${}^{233}_{92}\text{U}$ nucleus = 232.98915 umass of ${}^{91}_{36}\text{Kr}$ nucleus = 90.90368 umass of ${}^{139}_{56}\text{Ba}$ nucleus = 138.87810 u

> answer =MeV (3 marks)

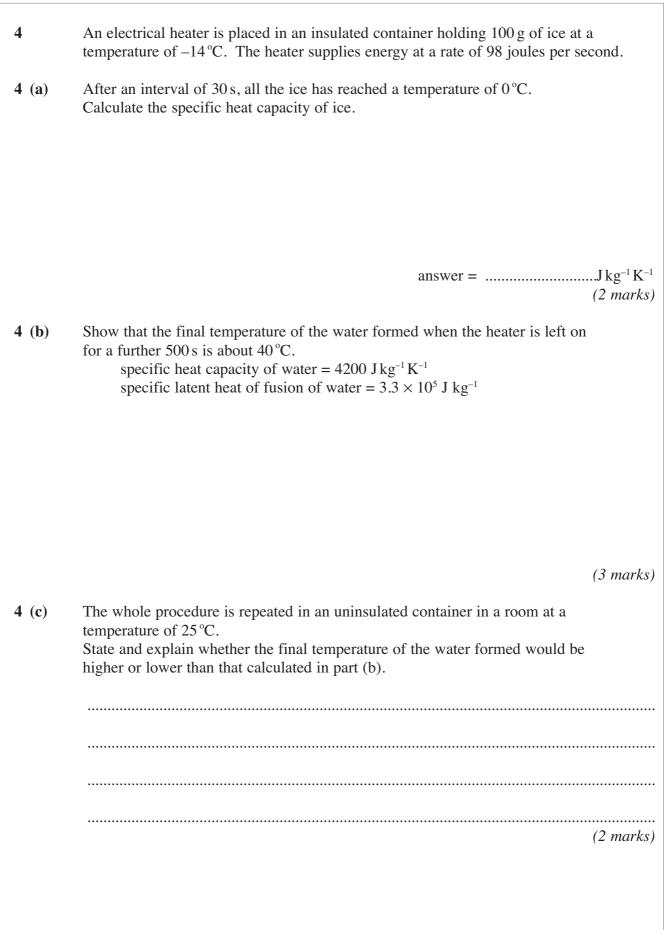
> > 8



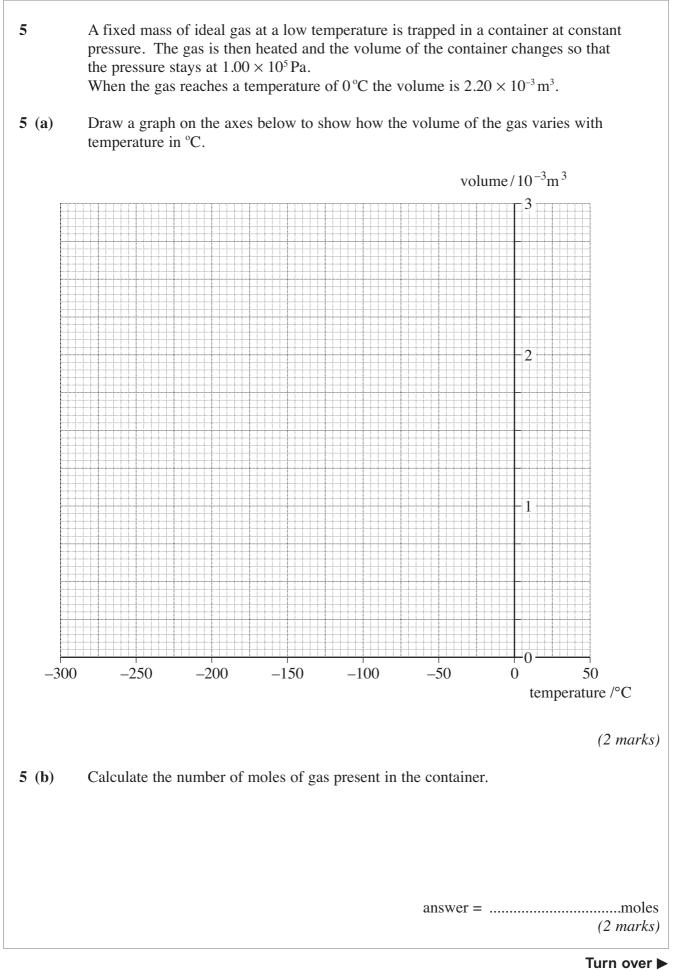
Turn over ►

2	The first artificially produced isotope, phosphorus $^{30}_{15}$ P, was formed by bombarding an aluminium isotope, $^{27}_{13}$ Al, with an α particle.
2 (a)	Complete the following nuclear equation by identifying the missing particle.
	$^{27}_{13}\text{Al} + \alpha \rightarrow ^{30}_{15}\text{P} + \dots$
	(1 mark)
2 (b)	For the reaction to take place the α particle must come within a distance, d , from the centre of the aluminium nucleus. Calculate d if the nuclear reaction occurs when the α particle is given an initial kinetic energy of at least 2.18×10^{-12} J.
	The electrostatic potential energy between two point charges Q_1 and Q_2 is equal to $\frac{Q_1Q_2}{4\pi\epsilon_0 r}$ where <i>r</i> is the separation of the charges and ϵ_0 is the permittivity of free energy
	permittivity of free space.

answer =m (3 marks)



Turn over


7

7

5 (c)	Calculate the average kinetic energy of a molecule when this gas is at a temperature of 50.0 °C. Give your answer to an appropriate number of significant figures.
	answer =J
5 (d)	Calculate the total internal energy of the gas at a temperature of 50.0 °C. (3 marks)
	answer =J (1 mark)
5 (e)	By considering the motion of the molecules explain how a gas exerts a pressure and why the volume of the container must change if the pressure is to remain constant as the temperature increases.
	The quality of your written communication will be assessed in this question.
Copyright © 201	11 AQA and its licensors. All rights reserved. (6 marks)

