AQA

Please write clearly in block capitals.

Centre number

Candidate number

Surname
Forename(s) \qquad
Candidate signature \qquad

A-level

CHEMISTRY

Paper 2 Organic and Physical Chemistry

Tuesday 12 June 2018

Afternoon
Time allowed: 2 hours

Materials

For this paper you must have:

- the Periodic Table/Data Booklet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on the blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
TOTAL	

Answer all questions in the spaces provided.

| $\mathbf{0}$ | 1 |
| :--- | :--- | This question is about the reactions of alkanes.

0	1	1
1	Alkanes can be used as fuels.	

Give an equation for the combustion of heptane $\left(\mathrm{C}_{7} \mathrm{H}_{16}\right)$ in an excess of oxygen.

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ Heptane can be obtained from the catalytic cracking of hexadecane $\left(\mathrm{C}_{16} \mathrm{H}_{34}\right)$ at a high |
| :--- | :--- | :--- | temperature.

Identify a suitable catalyst for this process.
Give one condition other than high temperature.
Give an equation for the catalytic cracking of one molecule of hexadecane to produce one molecule of heptane, one molecule of cyclohexane and one other product.
[3 marks]
Catalyst \qquad
Condition \qquad

Equation

| $\mathbf{0}$ | $\mathbf{1}$. | $\mathbf{3}$ Alkanes can be used in free-radical substitution reactions to produce |
| :--- | :--- | :--- | halogenoalkanes.

Give equations for the propagation steps in the reaction of butane to form 2-chlorobutane.
\qquad

| $\mathbf{0}$ | $\mathbf{1}$ | .4 Chlorofluorocarbons (CFCs) are a group of halogenoalkanes currently banned in |
| :--- | :--- | :--- | :--- | many countries. They cannot be used as solvents or refrigerants because of their effect on the environment.

The structure of a CFC is shown.

Identify the radical produced from this CFC that is responsible for the depletion of ozone in the atmosphere.
Explain, with the aid of equations, why a single radical can cause the decomposition of many molecules of ozone.

Radical
Explanation
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Turn over for the next question

$\mathbf{0}$	$\mathbf{2}$ Halogenoalkanes are useful compounds in synthesis. A reaction pathway is shown.

$\mathrm{CH}_{2}(\mathrm{OH}) \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{Br} \quad \stackrel{\text { Reaction } 1}{\xrightarrow[\mathrm{NaOH}]{ }}$

$$
\mathrm{CH}_{2}(\mathrm{OH}) \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OH}
$$

Reaction 3
Compound \mathbf{Z}

Compound \mathbf{Y}
$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}$
Reaction 2

| $\mathbf{0}$ | $\mathbf{2} \cdot \mathbf{1}$ Give the IUPAC name for $\mathrm{CH}_{2}(\mathrm{OH}) \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{Br}$ |
| :--- | :--- | :--- |

$\mathbf{0}$	$\mathbf{2} .2$	Reaction 1 occurs via a nucleophilic substitution mechanism.

Explain why the halogenoalkane is attacked by the nucleophile in this reaction.
\qquad

Draw the displayed formula of Compound \mathbf{Y}.

| $\mathbf{0}$ | $\mathbf{2} .4$ Compound \mathbf{Z} has the empirical formula $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{NO}$ |
| :--- | :--- | :--- |

Give the structure of Compound \mathbf{Z}.
Suggest the reagent for Reaction 3.

Structure

| 0 | 3 | The oxidation of propan-1-ol can form propanal and propanoic acid. |
| :--- | :--- | :--- | The boiling points of these compounds are shown in Table 1.

Table 1

Compound	Boiling point $/{ }^{\circ} \mathrm{C}$
propan-1-ol	97
propanal	49
propanoic acid	141

In a preparation of propanal, propan-1-ol is added dropwise to the oxidising agent and the aldehyde is separated from the reaction mixture by distillation.

| $\mathbf{0}$ | $\mathbf{3} .1$ | Explain, with reference to intermolecular forces, why distillation allows propanal to be |
| :--- | :--- | :--- | separated from the other organic compounds in this reaction mixture.

\qquad

| $\mathbf{0}$ | $\mathbf{3} .2$ | $\mathbf{2}$ Give two ways of maximising the yield of propanal obtained by distillation of the |
| :--- | :--- | :--- | reaction mixture.

1
\qquad
\qquad
\qquad
\qquad
\qquad
2
\qquad
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{3} .3$ | Describe how you would carry out a simple test-tube reaction to confirm that the |
| :--- | :--- | :--- | sample of propanal obtained by distillation does not contain any propanoic acid.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 3 continues on the next page

0	$\mathbf{3} .4$	4
4		

Combustion of 457 mg of ethanol increased the temperature of 150 g of water from $25.1^{\circ} \mathrm{C}$ to $40.2^{\circ} \mathrm{C}$

Calculate a value, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for the enthalpy of combustion of ethanol in this experiment.
Give your answer to the appropriate number of significant figures.
(The specific heat capacity of water is $4.18 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~g}^{-1}$)

| $\mathbf{0}$ | $\mathbf{3} .5$ | A mixture of isomeric alkenes is produced when pentan-2-ol is dehydrated in the |
| :--- | :--- | :--- | presence of hot concentrated sulfuric acid. Pent-1-ene is one of the isomers produced.

Name and outline a mechanism for the reaction producing pent-1-ene.

Name of mechanism \qquad
Mechanism

$\mathbf{0}$	$\mathbf{3}$.	6	A pair of stereoisomers is also formed in the reaction in Question 03.5.

Name the less polar stereoisomer formed.
Explain how this type of stereoisomerism arises.

Name \qquad
Explanation \qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{4} \quad$ Compounds \mathbf{A} and \mathbf{B} react together to form an equilibrium mixture containing |
| :--- | :--- | compounds \mathbf{C} and \mathbf{D} according to the equation

$$
2 \mathbf{A}+\mathbf{B} \rightleftharpoons 3 \mathbf{C}+\mathbf{D}
$$

| 0 | 4 | 1 |
| :--- | :--- | :--- | A beaker contained $40 \mathrm{~cm}^{3}$ of a $0.16 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous solution of \mathbf{A}. $9.5 \times 10^{-3} \mathrm{~mol}$ of \mathbf{B} and $2.8 \times 10^{-2} \mathrm{~mol}$ of \mathbf{C} were added to the beaker and the mixture was left to reach equilibrium.

The equilibrium mixture formed contained $3.9 \times 10^{-3} \mathrm{~mol}$ of \mathbf{A}.
Calculate the amounts, in moles, of \mathbf{B}, \mathbf{C} and \mathbf{D} in the equilibrium mixture.

Amount of D mol

| $\mathbf{0}$ | $\mathbf{4} \cdot \mathbf{2}$ Give the expression for the equilibrium constant $\left(K_{\mathrm{c}}\right)$ for this equilibrium and its units. |
| :--- | :--- | :--- | [2 marks]

$K_{\text {c }}$

Units \qquad

| $\mathbf{0}$ | $\mathbf{4} .3$ A different equilibrium mixture of these four compounds, at a different temperature, |
| :--- | :--- | contained 0.21 mol of $\mathbf{B}, 1.05 \mathrm{~mol}$ of \mathbf{C} and 0.076 mol of \mathbf{D} in a total volume of $5.00 \times 10^{2} \mathrm{~cm}^{3}$ of solution.

At this temperature the numerical value of K_{c} was 116
Calculate the concentration of \mathbf{A}, in $\mathrm{mol} \mathrm{dm}^{-3}$, in this equilibrium mixture. Give your answer to the appropriate number of significant figures.

| 0 | $\mathbf{4}$ | .4 |
| :--- | :--- | :--- | Justify the statement that adding more water to the equilibrium mixture in Question 04.3 will lower the amount of \mathbf{A} in the mixture.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{5} \quad$ Bromate (V) ions and bromide ions react in acid conditions according to the equation |
| :--- | :--- | :--- |

$$
\mathrm{BrO}_{3}^{-}(\mathrm{aq})+5 \mathrm{Br}^{-}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 3 \mathrm{Br}_{2}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

| $\mathbf{0}$ | $\mathbf{5}$. | $\mathbf{1}$ A series of experiments was carried out at a given temperature. The results were |
| :--- | :--- | :--- | :--- | used to deduce the rate equation for the reaction.

$$
\text { rate }=k\left[\mathrm{BrO}_{3}^{-}\right]\left[\mathrm{Br}^{-}\right]\left[\mathrm{H}^{+}\right]^{2}
$$

Table 2 shows an incomplete set of results.

Table 2

Experiment	$\text { Initial }\left[\mathrm{BrO}_{3}^{-}\right]$ $/ \mathrm{mol} \mathrm{dm}^{-3}$	Initial $\left[\mathrm{Br}^{-}\right]$	Initial $\left[\mathrm{H}^{+}\right]$ $/ \mathrm{mol} \mathrm{dm}^{-3}$	Initial rate of reaction $/ \mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$
1	0.10	0.20	0.30	2.4×10^{-2}
2		0.20	0.30	3.6×10^{-2}
3	0.20	0.40	0.50	
4	0.10	0.10		2.7×10^{-2}

Use the data from Experiment 1 to calculate a value for the rate constant, k, at this temperature and give its units.

Give your answer to an appropriate number of significant figures.
k \qquad Units \qquad

0	$\mathbf{5}$	$\mathbf{2}$ Complete Table 2.

Space for working

| 0 | 5 | $\mathbf{3}$ | A second series of experiments was carried out to investigate how the rate of the |
| :--- | :--- | :--- | :--- | reaction varies with temperature.

The results were used to obtain a value for the activation energy of the reaction, E_{a}
Identical amounts of reagents were mixed at different temperatures.
The time taken, t, for a fixed amount of bromine to be formed was measured at different temperatures.

The results are shown in Table 3.
Table 3

Temperature, \boldsymbol{T} $/ \mathbf{K}$	$\frac{\mathbf{1}}{\boldsymbol{T}} / \mathbf{K}^{-1}$	Time, \boldsymbol{t} $/ \mathbf{s}$	$\frac{\mathbf{1}}{\boldsymbol{t}} / \mathbf{s}^{-1}$	$\ln \frac{\mathbf{1}}{\boldsymbol{t}}$
286	3.50×10^{-3}	54	1.85×10^{-2}	-3.99
295	3.39×10^{-3}	27	3.70×10^{-2}	
302		15	6.67×10^{-2}	-2.71
312	3.21×10^{-3}	8	1.25×10^{-1}	-2.08

Complete Table 3.

| 0 | 5 | 4 |
| :--- | :--- | :--- | The Arrhenius equation can be written as

$$
\ln k=-\frac{E_{a}}{R}\left(\frac{1}{T}\right)+C_{1}
$$

In this experiment, the rate constant, k, is directly proportional to $\frac{1}{t}$
Therefore

$$
\ln \frac{1}{t}=-\frac{E_{a}}{R}\left(\frac{1}{T}\right)+C_{2}
$$

where C_{1} and C_{2} are constants.
Use values from Table 3 to plot a graph of $\ln \frac{1}{t}$ (y axis) against $\frac{1}{T}$ on the grid.
Use your graph to calculate a value for the activation energy, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for this reaction.

The value of the gas constant, $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

0	6
Data about the hydrogenation of cyclohexene and of benzene are given.	

Compare the stability of benzene with that of the hypothetical cyclohexa-1,3,5-triene molecule.
Use the data in your answer.
\qquad

| $\mathbf{0}$ | $\mathbf{6} .2$ The enthalpy of hydrogenation of cyclohexa-1,3-diene is not exactly double that of |
| :--- | :--- | :--- | cyclohexene.

Suggest a value for the enthalpy of hydrogenation of cyclohexa-1,3-diene and justify your value.
\qquad

| 0 | 7 |
| :--- | :--- | Acyl chlorides are useful reagents in synthesis. They react with aromatic compounds and also with alcohols.

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{1}$ | $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}$ reacts with benzene in the presence of AlCl_{3} in an electrophilic |
| :--- | :--- | :--- | :--- | :--- | substitution reaction.

Give an equation for the reaction of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}$ with AlCl_{3} to form the electrophile. Outline a mechanism for the reaction of this electrophile with benzene.

Equation
Mechanism

Give the IUPAC name of the alcohol.
Give the reagent needed for this reaction and name the mechanism.

IUPAC name
Reagent \qquad
Name of mechanism \qquad

| 0 | $\mathbf{7}$. | 3 |
| :--- | :--- | :--- | The alcohol shown in Question 07.2 reacts with ethanoyl chloride to form an ester.

Describe what would be observed when the alcohol reacts with ethanoyl chloride. Name the mechanism for the reaction to form the ester. Draw the structure of the ester.

Observation
\qquad

Name of mechanism \qquad

Structure of ester

0	8	Use the Data Booklet to help you answer this question about amino acids.

Figure 1 shows parts of two polypeptide chains in a beta-pleated sheet of a protein.
Figure 1

| $\mathbf{0}$ | $\mathbf{8}$ | $\mathbf{1}$ The polypeptide chains are held together by hydrogen bonding as shown in |
| :--- | :--- | :--- | Figure 1.

Explain how these hydrogen bonds form.
\qquad
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{8}$ | $\mathbf{2}$ A different type of bond can form between two polypeptide chains when the chains |
| :--- | :--- | :--- | each contain the amino acid cysteine.

Complete the structure to show the bond that forms between the side chains of two cysteine molecules.

| 0 | 8 | 3 | The type of bond in Question $\mathbf{0 8 . 2}$ between two polypeptide chains influences the |
| :--- | :--- | :--- | :--- | three-dimensional structure of the protein.

Name this type of protein structure.

0	8.	4

| 0 | 9 |
| :--- | :--- | Use the Data Booklet to help you answer this question about DNA.

Figure 2 shows a fragment of a DNA double helix.
The letters A, C, G and T represent the four bases in one strand.
The numbers 1, 2, 3, 4 and 5 represent the bases in the complementary strand.
Figure 2

| $\mathbf{0}$ | $\mathbf{9} .1$ | Complete Table 4 to show the correct sequence of bases in the complementary |
| :--- | :--- | :--- | strand represented by the numbers 1 to 5

Table 4

1	2	3	4	5

| 0 | $\mathbf{9}$ | $\mathbf{2}$ Deduce the total number of hydrogen bonds formed between the five bases in each |
| :--- | :--- | :--- | strand.

Tick (\checkmark) one box.
[1 mark]

10	12	13	15

| $\mathbf{0}$ | $\mathbf{9}$ | $\mathbf{3}$ Base A is part of a nucleotide in the DNA strand shown in Figure 2. |
| :--- | :--- | :--- | :--- | A nucleotide contains a 2-deoxyribose molecule.

An incomplete 2-deoxyribose molecule is shown.
Complete the structure to show the nucleotide that contains base A. You should represent base A by the letter A.

Turn over for the next question

| $\mathbf{1}$ | $\mathbf{0} \quad$ This question is about amines. |
| :--- | :--- | :--- |

| $\mathbf{1}$ | $\mathbf{0}$. | $\mathbf{1}$ The infrared spectra \mathbf{A}, \mathbf{B} and \mathbf{C} are those of a primary amine, a tertiary amine and a a |
| :--- | :--- | :--- | nitrile, but not necessarily in that order.

A

Give the letter of each compound in the correct box.

primary amine	tertiary amine	nitrile

Draw the skeletal formulas of these three secondary amines.

| $\mathbf{1}$ | $\mathbf{0} .3$ | Primary amines can be prepared by the reaction of halogenoalkanes with ammonia or |
| :--- | :--- | :--- | by the reduction of nitriles.

Justify the statement that it is better to prepare primary amines from nitriles rather than from halogenoalkanes.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

1	0	4
4	Draw the structure of a primary amine with four carbon atoms that cannot be	

$\mathbf{1}$	$\mathbf{0} .5$	$\mathbf{5}$ A student dissolves a few drops of propylamine in $1 \mathrm{~cm}^{3}$ of water in a test tube.

Give an equation for the reaction that occurs.
Describe what is observed when Universal Indicator is added to this solution.

Equation
Observation
\qquad
\qquad

| $\mathbf{1}$ | $\mathbf{0} .6$ | Phenylamine can be prepared by a process involving the reduction of nitrobenzene |
| :--- | :--- | :--- | using tin and an excess of hydrochloric acid.

Give an equation for the reduction of nitrobenzene to form phenylamine. Use $[\mathrm{H}]$ to represent the reducing agent.
Explain why an aqueous solution is obtained in this reduction even though phenylamine is insoluble in water.

Equation
Explanation
\qquad
\qquad

| $\mathbf{1}$ | $\mathbf{1}$ |
| :--- | :--- |\quad There are several isomers with the molecular formula $\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{2}$

1	$\mathbf{1}$	$\mathbf{1}$

Give the number of peaks in the ${ }^{13} \mathrm{C}$ NMR spectrum of this isomer.
State and explain the splitting pattern of the peak for the hydrogens labelled a in its ${ }^{1} \mathrm{H}$ NMR spectrum.

Number of ${ }^{13} \mathrm{C}$ peaks \qquad
Splitting pattern \qquad
Explanation \qquad
\qquad
\qquad
\qquad

$\mathbf{1}$	$\mathbf{1}$.	$\mathbf{2}$ Draw the structure of the isomer of $\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{2}$ used to make nylon 6,6

| 1 | 1 | 3 |
| :--- | :--- | :--- | and has only two peaks in its ${ }^{13} \mathrm{C}$ NMR spectrum.

| 1 | $\mathbf{1}$. |
| :--- | :--- | $\mathbf{4}$ Draw the structure of the isomer of $\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{2}$ that contains two tertiary amine groups and has only two peaks in its ${ }^{13} \mathrm{C}$ NMR spectrum.

END OF QUESTIONS

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2018 AQA and its licensors. All rights reserved.

