

Mark Scheme (Results)

November 2021

Pearson Edexcel GCE In Mathematics (9MA0) Paper 31 Statistics

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2021 Question Paper Log Number P68828A Publications Code 9MA0_03_2111_MS All the material in this publication is copyright © Pearson Education Ltd 2021

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 100.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt[4]{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper

- The second mark is dependent on gaining the first mark
- 4. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- Where a candidate has made multiple responses <u>and indicates which response</u> <u>they wish to submit</u>, examiners should mark this response.
 If there are several attempts at a question <u>which have not been crossed out</u>, examiners should mark the final answer which is the answer that is the <u>most</u> <u>complete</u>.
- 6. Ignore wrong working or incorrect statements following a correct answer.
- 7. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used.

9MA0-31	Mark	Scheme	October	2021	(Final)
			0 0 0 0 0 0 0		

Qu 1	Scheme		Marks	AO	
(a)	Disadvantage: e.g. Not random; cannot use (re	liably) for inferences	B1	1.1b	
		(1)			
(b)	[Sight or correct use of] $X \sim B(36, 0.08)$	M1	3.3		
(i)	P(X=4) = 0.167387 a		A1	1.1b	
(ii)	$\begin{bmatrix} P(X7) = 1 & P \neq X, & 6 \end{bmatrix} = 0$	0.022233 awrt <u>0.0222</u>	A1	1.1b	
			(3)		
(c)	P(In dance club and dance tango) = 0.4×0.08 =	$= 0.032 \text{ or } \frac{4}{125} \text{ or } 3.2\%$	B1	1.1b	
			(1)		
(d)	[Let $T =$ those who can dance the Tango. Sight	or use of] $T \sim B(50, "0.032")$	M1	3.3	
	[P(T < 3) = P(T, 2) =] 0.7850815	awrt <u>0.785</u>	A1	1.1b	
			(2)		
	N		(7 m	arks)	
(a)		tes			
(a)	B1 for a suitable disadvantage:	D. NOT alles	- (D A)		
	Allow (B1) Not random <u>or</u> less random (o.e.)	Do NOT allow Not representative	(B0)		
	Cannot use (reliably) for inferences	Less accurate			
	(More likely to be) biased	Any comment based on tim	ne or cost		
		Any mention of skew			
		Any mention of non-respor	ise		
(b)	M1 for sight of B(36, 0.08) Allow in words: <u>bi</u> may be implied by one correct answer to 2sf Allow for $36C4 \times 0.08^4 \times 0.92^{32}$ as this is "co	or sight of $P(X, 6) = 0.97$		wrt 0.98	
(i) (ii)	1st A1 for awrt 0.167NB An answer of just2nd A1 for awrt 0.0222	st awrt 0.167 scores $M1(\Rightarrow)$	1 st A1		
(c)	B1 for 0.032 o.e. (Can allow for sight of 0.4×0.08)				
(d)	M1 for sight of B(50, "0.032") ft their answer may be implied by correct answer or sight of $[P(T, 3)] = 0.924348$ i.e. awrt A1 for awrt 0.785		•		
MR	Allow MR of 50 (e.g. 30) provided clearly	attempting $P(T, 2)$ and sc	ore M1A0		

Qu 2	Scheme	Ma	rks	AO	
(a)	Negative	B1		1.2	
			(1)		
(b)	Marc's suggestion is compatible because it's negative correlation	B1		2.4	
			(1)		
(c)	(r =) -0.54458266 awrt <u>-0.545</u>	B1		1.1b	
		D1	(1)	2.5	
(d)	$H_0: \rho = 0$ $H_1: \rho = 0$	B1		2.5	
	$[5\% 1-\text{tail } \text{cv} =] (\underline{+}) \ 0.4259$ (significant result / reject H ₀)	M1		1.1a	
	There is evidence of negative <u>correlation</u> between the <u>number of letters</u> in	A1		2.2b	
	(or <u>length</u> of) a student's last <u>name</u> and their first <u>name</u>				
			(3)		
		(6 n	nark	s)	
	Notes	(01		5)	
(a)	B1 for "negative" Allow "slight" or "weak" etc				
	Allow a description e.g. "as x increases y decreases" or in context e.g. "p	eople	with	longer	
	last names tend to have shorter first names" A comment of "negative skew" is B0				
	Need to see distinct or separate responses for (a) and (b)				
(b)					
(c)	B1 for awrt -0.545				
(d)	 B1 for both hypotheses correct in terms of ρ M1 for a critical value compatible with their H₁: 1-tail: awrt ± 0.426 (condone ± 0.425) or 2-tail (B0 scored for H₁): awr 	≁ + 0	107		
	If hypotheses are in words and can deduce whether one or two-tail then	use the		ords.	
	If no hypotheses or their H_1 is not clearly one or two tail assume one-tail A1 for compatible signs between cv and <i>r</i> and a correct conclusion in conte		ntion	ing	
	<u>correlation</u> and <u>number of letters</u> or <u>length</u> and <u>name</u> (ft their value from Do NOT award this A mark if contradictory comments or working seen	n (c))		-	
	or comparison of 0.426 with significance level of 0.05 etc				
NB	The M1A1 can be scored independently of the hypotheses				

Qu 3	Scheme	Mar	·ks	AO	
(a)	Hectopascal or hPa	B1		1.2	
(b)	214		(1)		
(b)	$\overline{x} = \overline{y}$ 1010 or $\frac{214}{30}$ 1010	M1		1.1b	
	= 1017.1333 awrt <u>1017</u>	A1		1.1b	
(c)	$\sigma_x = \sigma_y$ (or statement that standard deviation is not affected by this	M1	(2)	3.1b	
	type of coding)				
	$\left[\sigma_{y}=\right]\sqrt{\frac{5912}{30}-\left("7.13[33]"\right)^{2}}$ or $\sqrt{146.1822}$	M1		1.1b	
	= 12.0905 awrt <u>12.1</u>	A1	(3)	1.1b	
(d)	High pressure (since approx. mean + sd) so clockwise Locations are (from North to South): Leuchars, Heathrow, Hurn	B1		2.4	
	Wind direction is direction wind blows <u>from</u> So: Heathrow (NE) Hurn (E) Leuchars (W)	B1		2.2a	
		(9 m	(2)	a)	
	Notes	(8 m	агк	s)	
FYI	$1 \text{ hPa} = 100 \text{ Pa}; 10\text{hPa} = 1 \text{ kPa}; 1\text{Pa} = 1 \text{ Nm}^{-2}$				
(a)	B1 for "hectopascal" <u>or</u> hPa (condone pascals, allow millibars <u>or</u> mb) Do NOT allow kPa <u>or</u> kilopascals <u>or</u> Pa on its own	o.e.			
(b)	M1 for a strategy to find \overline{x}				
(~)	Allow an attempt to find $\sum x$ that gets as far as $\sum x = \sum y + 30 \times 10^{-10}$.010 [=	= 30	514]	
	A1 for awrt 1017 (accept 1020) [Ignore incorrect units]	L		-	
(c)	1 st M1 for an overall strategy using the fact $\sigma_x = \sigma_y$ (can be implied by	correc	t <u>fin</u>	al ans)	
	or for $\sum x = 30514$ and $\sum x^2 = 31041192$ (both seen and corrected)			,	
	2^{nd} M1 for a correct expression (with $$)(ft their \overline{y} to 3sf) allow awrt 1		146	.1822	
	<u>or</u> for correct expression in x can ft their $\sum x > 30000$ or their ar				
	A1 (dep on 2 nd M1) for awrt 12.1 [Ignore incorrect units]			, ,	
Final answer	Final ans of awrt 12.1 scores $3/3$ but if they then adjust for x e.g. add	1010 ((M01	M1A1)	
(d)	st B1 for at least one of these reasons (these 2 lines) clearly stated (may see diagram) Need "high pressure" and "clockwise" to score on 1 st line Contradictory statements B0 e.g. correct N~S list but say "anticlockwise"				
	2 nd B1 (indep of 1 st B1) for deducing the 3 correct directions either in the as above If the answers in table and text are different we take the table (as c				

Qu 4	Scheme	Marks	AO
(a)	0.08 + 0.09 + 0.36 = 0.53	B1	1.1b
		(1)	
(b)(i)	$\left[\mathbf{P}(G \cap E \cap S) = 0 \Rightarrow \right] \underline{p} = 0$	B1	1.1b
(ii)	$[P(G) = 0.25 \implies] 0.08 + 0.05 + q + "p" = 0.25$	M1	1.1b
	q = 0.12	A1	1.1b
(a)(i)		(3)	0.1
(c)(i)	$P(S E) = \frac{5}{12} \qquad \begin{vmatrix} r + p \\ r + p \\ r + 0.09 \\ r + 0.05 \\ r $	M1 A1ft	3.1a 1.1b
	$\begin{bmatrix} 12 & 3r + p + 0.09 + 0.03 & 12 \\ 12r = 5r + 5 \times 0.14 \implies \end{bmatrix} \underline{r = 0.10}$		
		A1	1.1b
(ii)	$\begin{bmatrix} 0.08 + 0.05 + "0.12" + "0" + 0.09 + "0.10" + 0.36 + t = 1 \implies \end{bmatrix} \underline{t = 0.20}$	B1ft	1.1b
(d)	$\mathbf{D}(\mathbf{G} - \mathbf{F}') = 0.2C + (0.2)$	(4)	
(d)	$P(S \cap E') = 0.36 + "q" [= 0.48]$	B1ft	1.1b
	$P([(S \cap E')] \cap G) = "q"[=0.12]$ and $P(G) = 0.25$ and	M1	2.1
	$P(S \cap E') \times P(G) = "0.48" \times \frac{1}{4}$ or 0.12	1011	2.1
	$P(S \cap E') \times P(G) = 0.12 = P([(S \cap E')] \cap G)$ so are independent	A1	2.2a
		(3)	
		(11 mar	ks)
	Notes		
(a)	B1 for 0.53 (or exact equivalent) [Allow 53%]		
(b)(i)	B1 for $p = 0$ (may be placed in Venn diagram)		
(ii)	M1 for a linear equation for q (ft letter "p" or their value if 0_{m} p_ 0.12) =	\Rightarrow by $p + q =$	= 0.12
	A1 for $q = 0.12$ (may be placed in Venn diagram)		
(c)(i)	M1 for a ratio of probabilities (<i>r</i> on num and den) (on LHS) with num < den	and num	or den
	correct ft. Allow ft of letter "p" or their p where 0 , $p < 0.86$ but "+ 0"		
	1^{st} A1ft for a correct ratio of probabilities (on LHS) allowing ft of their p when	-	
	2^{nd} A1 for $r = 0.1(0)$ or exact equivalent (may be in Venn diagram) Ans only		
(ii)	B1ft for $t = 0.2(0)$ (o.e.) or correct ft i.e. $0.42 - (p+q+r)$ where p, q, r as	nd t are all	probs
(d)	B1ft for $P(S \cap E') = 0.48$ (with label) (ft letter "q" or their value if 0 , q ,	0.12)	
	M1 for attempting all required probs (labelled) and using them in a correct test q		of a
	A1 for all probs correct and a correct deduction (no ft deduction here)	si (allow Il	01 9)
SC	No "P" If correct argument seen apart from P for probability for all 3 marks, a		
	If unsure about an attempt using conditional probabilities, please sen	d to review	W.
	G E		

Qu 5	Scheme	Marks	AO		
(a)	$\begin{bmatrix} \text{Let} F \sim N(166.5, 6.1^2) \end{bmatrix} P(F < k) = 0.01 \implies \frac{k - 166.5}{6.1} = 2.3263$	M1	3.4		
	k = 152.309 <u>152</u> or awrt <u>152.3</u>	A1	1.1b		
(b)	[P(150 < F < 175) =] 0.914840 awrt <u>0.915</u>	(2) B1	1.1b		
(c)	P(F > 160 150 < F < 175)	(1) M1	3.1b		
	$= \frac{P(160 < F < 175)}{P(150 < F < 175)} \underline{\text{or}} \frac{P(160 < F < 175)}{"(b)"}$	M1	1.1b		
	$=\frac{0.7749487}{"0.91484"}$	Alft	1.1b		
	= 0.84708 awrt 0.847	A1 (4)	1.1b		
(d)	$H_0: \mu = 466.5$ $H_1: \mu = 166.5$	B1	2.5		
	[Let X = height of female from 2 nd country] $\overline{X} \sim N\left(166.5, \left(\frac{7.4}{\sqrt{50}}\right)^2\right)$	M1	3.3		
	$P(\bar{X} < 164.6) = 0.03472$	A1	3.4		
	[0.0347 < 0.05 so significant <u>or</u> reject H ₀] There is evidence to support Mia's belief	dA1	2.2b		
		(4)			
	Notes	(11 mar	ks)		
(a)	M1 for standardising (allow \pm) with k, 166.5 and 6.1 and set equal to a z value A1 for 152 or awrt 152.3 Ans only 2/2 [Condone poor use of notation e.g. P(4)]				
	Allow percentages instead of probabilities throughout.				
(b)	B1 for awrt 0.915				
(c)	1 st M1 for interpreting demand as an appropriate conditional probability (\Rightarrow 2 nd M1 for correct ratio of expressions (can ft their (b) on denominator) (\Rightarrow b 1 st A1ft for a correct ratio of probs (can ft their "0.9148" to 3sf from (b) if > 2 nd A1 for awrt 0.847	y1 st A1ft			
(d)	B1 for both correct hypotheses in terms of μ 1 st M1 for selecting the correct model (needn't use $\overline{X} \Rightarrow$ by standardisation of	or 1 st A1)			
	1 st A1 for correct use of the correct model i.e. awrt 0.035 (allow 0.04 if P(" \overline{X} " Condone P(" \overline{X} ">164.6) = 0.9652 or awrt 0.97 <u>only if</u> comparison with	"<164.6)			
ALT	Use of <i>z</i> value: Need to see $Z = -1.8(15)$ and cv of ± 1.6449 (allow 1.64 or				
ALT	Use of CR or CV for \overline{X} : Need to see " \overline{X} "< 164.7786 or CV = (awrt 164.8) for 1 st A1 Condone truncation i.e 164.7 or better 2 nd dA1 (dep on M1A1 only) for a correct inference in context. Must mention <u>Mia's belief</u> or <u>mean height of females/women</u> Do NOT award if contradictory statements about hypotheses made e.g. "not sig"				
SC	M0 for $\overline{X} \sim N(164.6,)$ If they achieve $p = awrt 0.035$ (o.e. with z-value or C correct conclusion in context is given score M0A0A1 [and SC for awrt	V of 166.3			

Qu 6	Scheme	Marks	AO		
(a)	[Sum of probs = 1 implies] $\log_{36} a + \log_{36} b + \log_{36} c = 1$	M1	3.1a		
	$\Rightarrow \log_{36}(abc) = 1$ so $abc = 36$	A1	3.4		
	All probabilities greater than 0 implies each of a , b and $c > 1$	B1	2.2a		
	$36 = 2^2 \times 3^2$ (or 3 numbers that multiply to give 36 e.g. 2, 2, 9 etc.)	dM1	2.1		
	Since a, b and c are distinct must be $2, 3, 6$ $(a = 2, b = 3, c = 6)$	A1	3.2a		
(b)	$(1)^{2} (1)^{2} (1)^{2} (1)^{2}$	(5)			
(0)	$(\log_{36} a)^2 + (\log_{36} b)^2 + (\log_{36} c)^2$	M1	3.4		
	[= 0.0374137+ 0.09398737+0.25]	. 1	1 11		
	= 0.38140 awrt <u>0.381</u>	A1 (2)	1.1b		
		(2)			
		(7 mark	(s)		
	Notes				
(a)	1 st M1 for a start to the problem using sum of probabilities leading to eq'n i	in <i>a</i> , <i>b</i> and	С		
	$1^{st} A1$ for reducing to the equation $abc = 36$ [Must follow from their equation	on.]			
NB	Can go straight from $abc = 36$ to the answer for full marks for part (a	a).			
	B1 for deducing that each value > 1 (may be implied by 3 integers all > 1 in the next line)				
	2^{nd} dM1 (dep on M1A1) for writing 36 as a product of prime factors <u>or</u>				
	3 values with product = 36 and none = 1 $2^{nd} \wedge 1$ for 2, 2 and 6 as a list on $a = 2$, $b = 2$ and $a = 6$				
SC	2^{nd} A1 for 2, 3 and 6 as a list or $a = 2$, $b = 3$ and $c = 6$ M0M0 If no method marks scored but a correct answer given score: M0A0E	21MOA1 (2/5)		
Ans only	This gets the SC score of 2/5 [Question says show your working ch	(273)		
		L .			
(b)	M1 for a correct expression in terms of a , b and c or values; ft their integer	rs <i>a</i> , <i>b</i> and	c		
	Condone invisible brackets if the answer implies they are used.				
	A1 for awrt 0.381				

G.B. Attwood 26/10/2021

Mark Scheme (Results)

November 2021

Pearson Edexcel GCE In Mathematics (9MA0) Paper 32 Mechanics

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2021 Question Paper Log Number P68824A Publications Code 9MA0_03_2111_MS All the material in this publication is copyright © Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS General Instructions for Marking

- 1. The total number of marks for the paper is 100.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt[4]{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- Where a candidate has made multiple responses <u>and indicates which response</u> <u>they wish to submit</u>, examiners should mark this response.
 If there are several attempts at a question <u>which have not been crossed out</u>, examiners should mark the final answer which is the answer that is the <u>most</u> <u>complete</u>.

- 6. Ignore wrong working or incorrect statements following a correct answer.
- 7. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used.

General Principles for Mechanics Marking

(But note that specific mark schemes may sometimes override these general principles)

- Rules for M marks: correct no. of terms; dimensionally correct; all terms that need resolving (i.e. multiplied by cos or sin) are resolved.
- Omission or extra g in a resolution is an accuracy error not method error.
- Omission of mass from a resolution is a method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- dM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of g = 9.8 should be given to 2 or 3 SF.
- Use of g = 9.81 should be penalised once per (complete) question.
 N.B. Over-accuracy or under-accuracy of correct answers should only be penalised once per complete question. However, premature approximation should be penalised every time it occurs.
- Marks must be entered in the same order as they appear on the mark scheme.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft
 - Mechanics Abbreviations M(A) Taking moments about A N2L Newton's Second Law (Equation of Motion) NEL Newton's Experimental Law (Newton's Law of Impact) HL Hooke's Law SHM Simple harmonic motion

PCLM Principle of conservation of linear momentum

RHS, LHS Right hand side, left hand side

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

Questio	n Scheme	Marks	AOs
1(a)	Use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$ with $t = 2$: $\mathbf{v} = 4\mathbf{i} + 2(2\mathbf{i} - 3\mathbf{j})$ OR integration: $\mathbf{v} = (2\mathbf{i} - 3\mathbf{j})t + 4\mathbf{i}$, with $t = 2$	M1	3.1a
	$\mathbf{v} = 8\mathbf{i} - 6\mathbf{j}$	Al	1.1b
		(2)	
1(b)	Use of $\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$ at $t = 3$: $(\mathbf{i} + \mathbf{j}) + \left[3 \times 4\mathbf{i} + \frac{1}{2} \times (2\mathbf{i} - 3\mathbf{j}) \times 3^2 \right]$ OR: find \mathbf{v} at $t = 3$: $4\mathbf{i} + 3(2\mathbf{i} - 3\mathbf{j}) = (10\mathbf{i} - 9\mathbf{j})$ then use $\mathbf{r} = \frac{1}{2}(\mathbf{u} + \mathbf{v})t$ $(\mathbf{i} + \mathbf{j}) + \left[\frac{1}{2} \left[4\mathbf{i} + (10\mathbf{i} - 9\mathbf{j}) \right] \times 3 \right]$ or $\mathbf{r} = \mathbf{v}t - \frac{1}{2}\mathbf{a}t^2$ $(\mathbf{i} + \mathbf{j}) + \left[3 \times (10\mathbf{i} - 9\mathbf{j}) - \frac{1}{2} \times (2\mathbf{i} - 3\mathbf{j}) \times 3^2 \right]$ OR integration: $\mathbf{r} = (\mathbf{i} + \mathbf{j}) + \left[(2\mathbf{i} - 3\mathbf{j}) \frac{1}{2}t^2 + 4t\mathbf{i} \right]$, with $t = 3$	M1	3.1a
	r = 22i - 12.5j	Al	2.2a
		(2)	
		(4 r	narks)
Notes:	Accept column vectors throughout		
1a M1	Complete method to find v , using ruva <i>t</i> or integration (M0 if i and/or j is missing)		
A1	Apply isw if they also find the speed		
1b M1	Complete method to find the p.v. but this mark can be scored if they i.e. the M1 is for the expression in the square bracket If they integrate, the M1 is earned once the expression in the square with $t = 3$ (M0 if i and/or j is missing)		en
A1	cao		

Question	Scheme	Marks	AOs	
	Mark parts (a) and (b) together			
2(a)	Equation of motion for A	M1	3.3	
	$3mg\sin\alpha - F - T = 3ma$	Al	1.1b	
		(2)		
2(b)	Resolve perpendicular to the plane	M1	3.4	
	$R = 3mg\cos\alpha$	Al	1.1b	
	$F = \frac{1}{6}R$	B1	1.2	
	Equation of motion for <i>B</i> OR for whole system	M1	3.3	
	$T - mg = ma \qquad \qquad \mathbf{OR} 3mg\sin\alpha - F - mg = 3ma + ma$	A1	1.1b	
	Complete method to solve for <i>a</i>	DM1	3.1b	
	$a = \frac{1}{10}g *$	A1*	2.2a	
		(7)		
2(c)		B1	1.1b	
	e.g. acceleration (of B) is constant; dependent on first B1	DB1	2.4	
		(2)		
2(d)	e.g. the tensions in the two equations of motion would be different. Tension on A would be different to tension on B	B1	3.5a	
		(1)		
		(12 r	narks)	
Notes:	N.B. If m's are consistently missing treat as a MR, so max(a) M1A0 (b) M1A0B0M1A1M1A1 (c) B1B1 (d) B1For (a) and (b), allow verification, but must see full equations of motion			
2a M1	Equation in T and a with correct no. of terms, condone sign errors and sin/cos confusion (If one of the 3's is missing, allow M1) N.B. Treat sin(3/5) etc as an A error but allow recovery			
A1	Correct equation (allow $(-a)$ instead of <i>a</i> in <u>both</u> equations)			

2b	M1	Correct no. of terms, condone sign errors and sin/cos confusion Allow if appears in (a)
	A1	Correct equation
	B1	Seen anywhere in (a) or (b), including on a diagram
	M1	Equation (for <i>B</i>) in <i>T</i> and <i>a</i> with correct no. of terms, condone sign errors and sin/cos confusion OR Whole system equation with correct no. of terms, condone sign errors and sin/cos confusion
	A1	Correct equation
	DM1	Complete method (trig may not be substituted), dependent on M1 in (a) and second M1 in (b) if they use two equations, or second M1 in (b) if they use one equation.
	A1*	Correct answer correctly obtained.
2c	B1	Straight line starting at the origin (could be reflected in the <i>t</i> -axis). B0 if continuous vertical line at the end.
	DB1	Dependent on first B1, for any equivalent statement
2d	B1	B0 if incorrect extras

Question	Scheme	Marks	AOs
	Part (a) is a 'Show that' so equations need to be given in full to earn A marks		
3(a)	$\begin{array}{c} C \\ S \\ B \\ G \\ R \\ M \\ D \\ D \\ A \\ F \end{array}$		
	Moments equation: (M1A0 for a moments inequality)	M1	3.3
	$\begin{split} M(A), & mga\cos\theta = 2Sa\sin\theta \\ M(B), & mga\cos\theta + 2Fa\sin\theta = 2Ra\cos\theta \\ M(C), & F \times 2a\sin\theta = mga\cos\theta \\ M(D), & 2Ra\cos\theta = mga\cos\theta + 2Sa\sin\theta \\ M(G), & Ra\cos\theta = Fa\sin\theta + Sa\sin\theta . \end{split}$	A1	1.1b
	$(\updownarrow) R = mg \mathbf{OR} (\leftrightarrow) F = S$	B1	3.4
	Use their equations (they must have enough) and $F \le \mu R$ to give an inequality in μ and θ only (allow DM1 for use of $F = \mu R$ to give an <i>equation</i> in μ and θ only)	DM1	2.1
	$\mu \ge \frac{1}{2} \cot \theta *$	A1*	2.2a
		(5)	
2(h)	$\begin{array}{c} C \\ R \\ \hline \\ 1 \\ 2 \\ mg \\ A \\ kmg \\ \end{array} \begin{array}{c} B \\ B \\ D \\$		
3(b)	Moments equation:	M1	3.4
	$\begin{split} \mathbf{M}(A), \ mga\cos\theta &= 2Na\sin\theta\\ \mathbf{M}(B), \ mga\cos\theta + 2kmga\sin\theta &= 2Ra\cos\theta + \frac{1}{2}mg2a\sin\theta\\ \mathbf{M}(D), \ 2Ra\cos\theta &= mga\cos\theta + N2a\sin\theta\\ \mathbf{M}(G), \ kmga\sin\theta + Na\sin\theta &= \frac{1}{2}mga\sin\theta + Ra\cos\theta \end{split}$	A1	1.16

		S.C. M(C), $mga\cos\theta + \frac{1}{2}mg2a\sin\theta = kmg2a\sin\theta$ M1A1B1						
		$1 + \frac{5}{4} = \frac{5k}{2} \qquad M1$						
		k = 0.9 A1						
		N = kmg - F OR $R = mg$	B1	3.3				
		Use their equations <u>(they must have enough)</u> to solve for <i>k</i> (numerical)	DM1	3.1b				
		k = 0.9 oe	A1	1.1b				
			(5)					
			(10 r	narks				
Not	es:							
3 a	M1	Any moments equation with correct terms, condone sign errors and sin/cos confusion						
	A1	Correct equation						
	B1	Correct equation						
	DM1	Dependent on M1, for using their equations (they must have enough give an inequality in μ and θ only (allow M1 for use of $F = \mu R$ to give an equation in μ and θ only)	<u>h)</u> and $F \leq \frac{1}{2}$	μR to				
	A1*	Given answer correctly obtained with no wrong working seen (e.g. $F = \mu R$ anywhere, A0)	if they use					
3b	M1	Any moments equation with correct terms, condone sign errors						
	A1	Correct equation						
	B1	Correct equation						
	DM1	Dependent on M1, for using their equations (they must have enough) with trig substituted, to solve for k , which must be numerical.						
	A1	cao						

Qı	uestion	Scheme	Marks	AOs		
		Note that $g = 10$; penalise once for whole question if $g = 9.8$				
	4(a)	Use $s = ut + \frac{1}{2}at^2$ vertically or any complete method to give an equation in <i>t</i> only	M1	3.4		
			Al	1.1b		
		$-70 = 65\sin\alpha \times t - \frac{1}{2} \times g \times t^2$	M (A)1	1.1b		
		t = 7 (s)	A1	1.1b		
			(4)			
	4(b)	Horizontal velocity component at $A = 65 \cos \alpha$ (60)	B1	3.4		
		Complete method to find vertical velocity component at A	M1	3.4		
		65 sin α - g × 7 OR $\sqrt{(-25)^2 + 2g \times 70}$ (45)	A1ft	1.1b		
		Sub for trig and square, add and square root : $\sqrt{60^2 + (-45)^2}$	M1	3.1b		
		75 Accept 80 (m s ⁻¹)	Al	1.1b		
			(5)			
	4(c)	e.g. an approximate value of g has been used, the dimensions of the stone could affect its motion, spin of the stone, $g = 10$ instead of 9.8 has been used, g has been assumed to be constant, wind effect, shape of the stone	B1	3.5b		
			(1)			
			(10 n	narks)		
Not	es:					
4a	M1	Complete method, correct no. of terms, condone sign errors and sin	/cos confus	sion		
	Al	Correct equation in <i>t</i> only with at most one error				
	M(A)1	Correct equation in <i>t</i> only				
		N.B. For 'up and down' methods etc, the two A marks are for all the equations that they use, lose a mark for each error.				
	A1	Cao $(g = 9.8, 7.1 \text{ or } 7.11)$ $(g = 9.81, 7.1 \text{ or } 7.12)$				
4b	B1	Seen, including on a diagram.				
	M1	Condone sign errors and sin/cos confusion				
	A1 ft	Correct expression; accept negative of this, follow their <i>t</i>				
	M1	Sub for trig and use Pythagoras				
	A1	Cao $(g = 9.8 \text{ or } 9.81, 75 \text{ or } 74.8)$				

4c	B1	B0 if incorrect extras
----	----	------------------------

Que	estion	Scheme	Marks	AOs
		Allow column vectors throughout this question		
5	5(a)	Differentiate v wrt t	M1	3.1a
		$\frac{3}{2}t^{-\frac{1}{2}}\mathbf{i}-2\mathbf{j}$ isw	A1	1.1b
			(2)	
5	5(b)	$3t^{\frac{1}{2}}=2t$	M1	2.1
		Solve for <i>t</i>	DM1	1.1b
		$t = \frac{9}{4}$	A1	1.1b
			(3)	
5	5(c)	Integrate v wrt t	M1	3.1a
		$\mathbf{r} = 2t^{\frac{3}{2}}\mathbf{i} - t^{2}\mathbf{j}(+\mathbf{C})$	A1	1.1b
		$t = 1$, $\mathbf{r} = -\mathbf{j} \Longrightarrow \mathbf{C} = -2\mathbf{i}$ so $\mathbf{r} = 2t^{\frac{3}{2}}\mathbf{i} - t^{2}\mathbf{j} - 2\mathbf{i}$	A1	2.2a
			(3)	
5(d)		$\sqrt{(3t^{\frac{1}{2}})^2 + (2t)^2} = 10$ or $(3t^{\frac{1}{2}})^2 + (2t)^2 = 10^2$	M1	2.1
		$9t + 4t^2 = 100$	M(A)1	1.1b
		t = 4	A1	1.1b
		$\mathbf{r} = 14\mathbf{i} - 16\mathbf{j}$	M1	1.1b
		$\sqrt{14^2 + (-16)^2}$	M1	3.1a
		$\sqrt{452} (2\sqrt{113}) (m)$	A1	1.1b
			(6)	
			(14 n	narks)
Notes	s:			
5 a	M1	Both powers decreasing by 1 (M0 if vector(s) disappear but allo	ow recovery)	
	A1	сао		
5 b	M1	Complete method, using \mathbf{v} , to obtain an equation in t only, allow	a sign error	
	DM1	Dependent on M1, solve for <i>t</i>		

	Al	cao
5c	M1	Both powers increasing by 1 (M0 if vectors disappear but allow recovery)
	A1	Correct expression without C
	A1	cao
5d	M1	Use of Pythagoras on \mathbf{v} and 10 to set up equation in t
	M(A)1	Correct 3 term quadratic in t
	A1	cao
	M1	Substitute their numerical <i>t</i> value into their r
	M1	Use of Pythagoras to find the magnitude of their r
	Al	cso