Pearson Edexcel

Mark Scheme (Results)

November 2021

Pearson Edexcel GCE
In Mathematics (9MA0)
Paper 31 Statistics

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2021
Question Paper Log Number P68828A
Publications Code 9MA0_03_2111_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 100 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for ‘knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

4. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
5. Where a candidate has made multiple responses and indicates which response they wish to submit, examiners should mark this response.
If there are several attempts at a question which have not been crossed out, examiners should mark the final answer which is the answer that is the most complete.
6. Ignore wrong working or incorrect statements following a correct answer.
7. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used.

9MA0-31 Mark Scheme October 2021(Final)

Qu 1	Scheme		Marks	AO
(a)	Disadvantage: e.g. Not random; cannot use (reliably) for inferences		B1	1.1 b
(b)	[Sight or correct use of $] \quad X \sim \mathrm{~B}(36,0.08)$		M1	3.3
(i) (ii)	$\mathrm{P}(X=4)=0.167387 \ldots$	awrt $\underline{0.167}$	A1	1.1 b
	$[\mathrm{P}(X-. .7)=1 \quad \mathrm{P} \notin X, 6)$	0.022233... awrt $\underline{\mathbf{0 . 0 2 2 2}}$	A1	1.1 b
			(3)	
(c)	$\mathrm{P}(\text { In dance club and dance tango })=0.4 \times 0.08=\underline{\mathbf{0 . 0 3 2}} \underline{\text { or } \frac{4}{\underline{125}}} \text { or } \underline{\mathbf{3 . 2 \%}}$		B1	1.1b
(d)			(1)	
	[Let $T=$ those who can dance the Tango. Sight or use of]$[\mathrm{P}(T<3)=\mathrm{P}(T, 2)=] \quad 0.7850815 \ldots . \quad T \sim \mathrm{~B}(50, " 0.032 ")$		M1	3.3
			A1	$1.1 \mathrm{~b}$
			(2)	
	Notes			
(a)	B1 for a suitable disadvantage:			
	Allow (B1)	Do NOT allow (B0)		
	Not random or less random (o.e.)	Not representative		
	Cannot use (reliably) for inferences	Less accurate		
	(More likely to be) biased	Any comment based on time or cost		
		Any mention of skew		
		Any mention of non-response		
(b)	M1 for sight of $B(36,0.08)$ Allow in words: may be implied by one correct answer to 2 s Allow for $36 \mathrm{C} 4 \times 0.08^{4} \times 0.92^{32}$ as this is "c	nomial with $n=36$ and $p=$ or sight of $\mathrm{P}(X, 6)=0.9$ rrect use"	$\frac{0.08}{776 \ldots \text { i.e. }}$	$\text { wrt } 0.98$
(i) (ii)	$1^{\text {st }}$ A1 for awrt 0.167 NB An answer of just awrt 0.167 scores M1 $(\Rightarrow) 1^{\text {st }} \mathrm{A} 1$			
	$2^{\text {nd }} \mathrm{A} 1$ for awrt 0.0222			
(c)	B1 for 0.032 o.e. (Can allow for sight of 0.4×0.08)			
(d)	```M1 for sight of B(50, "0.032") ft their answer to (c) provided it is a probability }\not=0.0 may be implied by correct answer or sight of [P(T, 3)]=0.924348...i.e. awrt 0.924 or P(T, 2) as part of 1- P(T, 2) calc. A1 for awrt 0.785```			
MR	Allow MR of 50 (e.g. 30) provided clearly attempting $\mathrm{P}(T, 2)$ and score M1A0			

Qu 2	Scheme	Marks	AO
(a)	Negative	B1	1.2
		(1)	
(b)	Marc's suggestion is compatible because it's negative correlation	B1	2.4
		(1)	
(c)	$(r=)-0.54458266 \ldots$ awrt - 0.545	B1 (1)	1.1 b
(d)	$\mathrm{H}_{0}: \rho=\varnothing \quad \mathrm{H}_{1}: \rho \quad 0$		2.5
	$[5 \%$ 1-tail cv =] (\pm) 0.4259		1.1a
	(significant result / reject H_{0}) There is evidence of negative correlation between the number of letters in (or length of) a student's last name and their first name	A1	2.2b
		(3)	
		(6 marks)	
	Notes		
(a)	B1 for "negative" Allow "slight" or "weak" etc Allow a description e.g. "as x increases y decreases" or in context e.g. "people with longer last names tend to have shorter first names" A comment of "negative skew" is B0 Need to see distinct or separate responses for (a) and (b)		
(b)	B1 for a comment that suggests data is compatible with the suggestion and a suitable reason such as "there is negative correlation" or a description in x and y or in context or the points lie close to a line with negative gradient or draw line $y=x$ and state that more points below the line so supports (or is compatible with) his suggestion A reason based on just a single point is B0 e.g. " 11 letters in last name has only 5 in first name"		
(c)	B1 for awrt -0.545		
(d)	B1 for both hypotheses correct in terms of ρ		
	M1 for a critical value compatible with their H_{1} : 1-tail: awrt ± 0.426 (condone $\pm 0.425)$ or 2 -tail $\left(\mathrm{B} 0\right.$ scored for $\left.\mathrm{H}_{1}\right)$: aw If hypotheses are in words and can deduce whether one or two-tail then If no hypotheses or their H_{1} is not clearly one or two tail assume one-tai A1 for compatible signs between cv and r and a correct conclusion in context correlation and number of letters or length and name (ft their value fro Do NOT award this A mark if contradictory comments or working seen or comparison of 0.426 with significance level of 0.05 etc	$t \pm 0.497$ use their wo xt mentioni (c)) e.g. "accep	ords. ng t H_{0} "
NB	The M1A1 can be scored independently of the hypotheses		

Qu 3	Scheme	Marks	AO
(a)	Hectopascal or hPa	B1	1.2
(b)	$\begin{array}{lllll} \bar{x}=\bar{y} & 1010 & \text { or } & \frac{214}{30} & 1010 \end{array}$	M1	1.1b
	$=1017.1333 \ldots$ awrt $\underline{1017}$	A1	1.1 b
(c)	$\sigma_{x}=\sigma_{y}$ (or statement that standard deviation is not affected by this type of coding)	M1	3.1b
	$\left[\sigma_{y}=\right] \sqrt{\frac{5912}{30}-(" 7.13[33 \ldots] ")^{2}}$ or $\sqrt{146.1822 . .}$	M1	1.1b
	$12.0905 \ldots \text { awrt } \mathbf{1 2 . 1}$	$\mathrm{A} 1$ (3)	1.1 b
(d)	High pressure (since approx. mean + sd) so clockwise Locations are (from North to South): Leuchars, Heathrow, Hurn	B1	2.4
	Wind direction is direction wind blows from So: Heathrow (NE) Hurn (E) Leuchars (W)	B1 (2)	2.2a
		(8 marks)	
	Notes		
FYI	$1 \mathrm{hPa}=100 \mathrm{~Pa} ; 10 \mathrm{hPa}=1 \mathrm{kPa} ; \quad 1 \mathrm{~Pa}=1 \mathrm{Nm}^{-2}$		
(a)	B1 for "hectopascal" or hPa (condone pascals, allow millibars or mb) o.e. Do NOT allow kPa or kilopascals or Pa on its own		
(b)	M1 for a strategy to find \bar{x} Allow an attempt to find $\sum x$ that gets as far as $\sum x=\sum y+30 \times 1010[=30514]$ A1 for awrt 1017 (accept 1020) [Ignore incorrect units]		
(c)	$1^{\text {st }} \mathrm{M} 1$ for an overall strategy using the fact $\sigma_{x}=\sigma_{y}$ (can be implied by correct final ans)		
	$2^{\text {nd }} \mathrm{M} 1$ for a correct expression (with $\sqrt{ }$)(ft their \bar{y} to 3sf) allow awrt or for correct expression in x can ft their $\sum x>30000$ or their A1 (dep on $\left.2^{\text {nd }} \mathrm{M} 1\right)$ for awrt 12.1 [Ignore incorrect units]	46 for 14 swer to	$.1822 . .$
$\begin{array}{r} \text { Final } \\ \text { answer } \end{array}$	Final ans of awrt 12.1 scores 3/3 but if they then adjust for x e.g. add 1010 (M0M1A1)		
(d)	$1^{\text {st }} \mathrm{B} 1$ for at least one of these reasons (these 2 lines) clearly stated (may see diagram) Need "high pressure" and "clockwise" to score on $1^{\text {st }}$ line Contradictory statements B0 e.g. correct N~S list but say "anticlockwise" $2^{\text {nd }} \mathrm{B} 1$ (indep of $1^{\text {st }} \mathrm{B} 1$) for deducing the 3 correct directions either in the table or stated as above If the answers in table and text are different we take the table (as question says)		

Qu 4	Scheme	Marks	AO
(a)	$0.08+0.09+0.36=\underline{\mathbf{0 . 5 3}}$	B1	1.1b
		(1)	
(b)(i)	$[\mathrm{P}(G \cap E \cap S)=0 \Rightarrow] \quad \boldsymbol{p}=\mathbf{0}$	B1	1.1b
(ii)	$[\mathrm{P}(G)=0.25 \Rightarrow] 0.08+0.05+q+{ }^{\prime \prime} p^{\prime \prime}=0.25$	M1	1.1b
	$\underline{q}=0.12$		1.1 b
		(3)	
(c)(i)	$\left[\mathrm{P}(S \mid E)=\frac{5}{12}\right] \underset{r+" p "}{\Rightarrow} \quad \frac{5}{2}$	M1	3.1a
	$\mathrm{P}(S \mid E)=\overline{12} \quad \sqrt{r+p^{\prime \prime}+0.09+0.05} \underset{12}{7}$	A1ft	1.1 b
	$[12 r=5 r+5 \times 0.14 \Rightarrow] \underline{r=0.10}$	A1	1.1b
(ii)	$[0.08+0.05+" 0.12 "+" 0 "+0.09+" 0.10 "+0.36+t=1 \Rightarrow] \underline{t}=\mathbf{0 . 2 0}$	B1ft	1.1b
		(4)	
(d)	$\mathrm{P}\left(S \cap E^{\prime}\right)=0.36+$ " q " $[=0.48]$	$\mathrm{B} 1 \mathrm{ft}$	1.1b
	$\mathrm{P}\left(\left[\left(S \cap E^{\prime}\right)\right] \cap G\right)=" q "[=0.12]$ and $\mathrm{P}(G)=0.25$ and	M1	2.1
	$\mathrm{P}\left(S \cap E^{\prime}\right) \times \mathrm{P}(G)=" 0.48 " \times \frac{1}{4} \quad \text { or } 0.12$		
	$\mathrm{P}\left(S \cap E^{\prime}\right) \times \mathrm{P}(G)=0.12=\mathrm{P}\left(\left[\left(S \cap E^{\prime}\right)\right] \cap G\right)$ so are independent	A1 (3)	2.2a
		(11 marks)	
	Notes		
(a)	B1 for 0.53 (or exact equivalent) [Allow 53\%]		
(b)(i)	B1 for $p=0$ (may be placed in Venn diagram)		
(ii)	M1 for a linear equation for $q(\mathrm{ft}$ letter " p " or their value if 0 „ $p, 0.12) \Rightarrow \mathrm{by} p+q=0.12$ A1 for $q=0.12$ (may be placed in Venn diagram)		
(c)(i)	M1 for a ratio of probabilities (r on num and den) (on LHS) with num correct ft . Allow ft of letter " p " or their p where $0, p<0.86$ but $1^{\text {st }} \mathrm{A} 1 \mathrm{ft}$ for a correct ratio of probabilities (on LHS) allowing ft of their p $2^{\text {nd }} \mathrm{A} 1$ for $r=0.1(0)$ or exact equivalent (may be in Venn diagram) An	and num is not req re $0, p<$ y/3	or den uired. 0.86
(ii)			
(d)	B 1 ft for $\mathrm{P}\left(S \cap E^{\prime}\right)=0.48$ (with label) (ft letter " q " or their value if $0 „ q$ " 0.12)		
	M1 for attempting all required probs (labelled) and using them in a correct test (allow ft of q) A1 for all probs correct and a correct deduction (no ft deduction here)		
SC	No "P" If correct argument seen apart from P for probability for all 3 marks, award (B0M1A1) If unsure about an attempt using conditional probabilities, please send to review.		

Qu 5	Scheme	Marks	AO
(a)	$\left[\text { Let } \quad F \sim \mathrm{~N}\left(166.5,6.1^{2}\right)\right] \mathrm{P}(F<k)=0.01 \Rightarrow \frac{k-166.5}{6.1}=2.3263$	M1	3.4
	$k=152.309 \ldots \quad \underline{152}$ or awrt $\underline{\underline{52.3}}$		1.1b
(b)	$[\mathrm{P}(150<F<175)=] \quad 0.914840 \ldots$ awrt $\underline{0.915}$	B1	1.1 b
(c)	$\mathrm{P}(F>160 \mid 150<F<175)$	M1	3.1b
	$\frac{\mathrm{P}(160<F<175)}{\mathrm{P}(150<F<175)} \text { or } \quad \frac{\mathrm{P}(160<F<175)}{"(\mathrm{~b}) "}$	M1	1.1b
	$=\frac{0.7749487 \ldots}{01484}$	A1ft	1.1b
	$=0.84708 \ldots$ awrt $\underline{\mathbf{0 . 8 4 7}}$	A1	1.1b
(d)	$\mathrm{H}_{0}: \mu=\Varangle 66.5 \quad \mathrm{H}_{1}: \mu \quad 166.5$	B1	2.5
	[Let $X=$ height of female from $2^{\text {nd }}$ country] $\bar{X} \sim \mathrm{~N}\left(166.5,\left(\frac{7.4}{\sqrt{50}}\right)^{2}\right)$	M1	3.3
	$\mathrm{P}(\bar{X}<164.6)=0.03472 \ldots$	A1	3.4
	$\left[0.0347 \ldots<0.05\right.$ so significant or reject H_{0}] There is evidence to support Mia's belief	dA1 (4)	2.2b
		(11 mar	
	Notes		
(a)(b)	M1 for standardising (allow \pm) with $k, 166.5$ and 6.1 and set equal to a z value $2.3<\|z\|<2.4$ A1 for 152 or awrt 152.3 Ans only $2 / 2$ [Condone poor use of notation e.g. $P\left(\frac{k-166.5}{6.1}\right)=-2.3263$] Allow percentages instead of probabilities throughout.		
(c)	$1^{\text {st }}$ M1 for interpreting demand as an appropriate conditional probability (\Rightarrow by $2^{\text {nd }}$ M1) $2^{\text {nd }} \mathrm{M} 1$ for correct ratio of expressions (can ft their (b) on denominator) (\Rightarrow by $1^{\text {st }}$ A1 ft) $1^{\text {st }} \mathrm{A} 1 \mathrm{ft}$ for a correct ratio of probs (can ft their " $0.9148 \ldots$.." to 3 sf from (b) if >0.775) $2^{\text {nd }} \mathrm{A} 1$ for awrt 0.847		
(d)	B1 for both correct hypotheses in terms of μ $1^{\text {st }}$ M1 for selecting the correct model (needn't use $\bar{X} \Rightarrow$ by standardisation or $1^{\text {st }} \mathrm{A} 1$) $1^{\text {st }} \mathrm{A} 1$ for correct use of the correct model i.e. awrt 0.035 (allow 0.04 if $\mathrm{P}\left(" \bar{X}^{\prime \prime}<164.6\right)$ seen) Condone $\mathrm{P}(" \bar{X} ">164.6)=0.9652$ or awrt 0.97 only if comparison with 0.95 is made		
ALT	Use of z value: Need to see $Z=-1.8(15 \ldots)$ and cv of ± 1.6449 (allow 1.64 or better) for $1^{\text {st }} \mathrm{A} 1$		
ALT	Use of CR or CV for \bar{X} : Need to see " $\bar{X} "<164.7786 \ldots$ or CV $=\ldots$ (awrt 164.8) for $1^{\text {st }} \mathrm{A} 1$ Condone truncation i.e 164.7 or better $2^{\text {nd }}$ dA1 (dep on M1A1 only) for a correct inference in context. Must mention Mia's belief or mean height of females/women Do NOT award if contradictory statements about hypotheses made e.g. "not sig"		
SC	M0 for $\bar{X} \sim \mathrm{~N}(\mathbf{1 6 4 . 6}, \ldots)$ If they achieve $p=$ awrt 0.035 (o.e. with z-value or CV of 166.3) and a correct conclusion in context is given score M0A0A1 [and SC for awrt $0.97>0.95$ case]		

Qu 6	Scheme	Marks	AO
(a)	[Sum of probs $=1$ implies] $\log _{36} a+\log _{36} b+\log _{36} c=1$	M	3.1a
	$\Rightarrow \log _{36}(a b c)=1$ so $a b c=36$	A1	3.4
	All probabilities greater than 0 implies each of a, b and $c>1$	B1	2.2a
	$36=2^{2} \times 3^{2}$ (or 3 numbers that multiply to give 36 e.g. 2, 2, 9 etc)	dM1	2.1
	Since a, b and c are distinct must be $\underline{\mathbf{2 , 3 , 6}} \quad \underline{(a=2, \boldsymbol{b}=\mathbf{3}, \boldsymbol{c}=\mathbf{6})}$	A1	3.2a
(b)	$\left(\log _{36} a\right)^{2}+\left(\log _{36} b\right)^{2}+\left(\log _{36} c\right)^{2}$	M1	3.4
		A1 (2)	1.1 b
		(7 marks)	
	Notes		
(a)	$1^{\text {st }} \mathrm{M} 1$ for a start to the problem using sum of probabilities leading to eq'n in a, b and c $1^{\text {st }} \mathrm{A} 1$ for reducing to the equation $a b c=36$ [Must follow from their equation.] Can go straight from $a b c=36$ to the answer for full marks for part (a). B1 for deducing that each value >1 (may be implied by 3 integers all >1 in the next line) $2^{\text {nd }}$ dM1 (dep on M1A1) for writing 36 as a product of prime factors or 3 values with product $=36$ and none $=1$ $2^{\text {nd }} \mathrm{A} 1$ for 2,3 and 6 as a list or $a=2, b=3$ and $c=6$ M0M0 If no method marks scored but a correct answer given score: M0A0B1M0A1 (2/5) This gets the SC score of $2 / 5$ [Question says show your working clearly] M1 for a correct expression in terms of a, b and c or values; ft their integers a, b and c Condone invisible brackets if the answer implies they are used. A1 for awrt 0.381		
NB			
$\underset{\text { Ans only }}{\text { SC }}$			
(b)			

Mark Scheme (Results)

November 2021

Pearson Edexcel GCE
In Mathematics (9MA0)
Paper 32 Mechanics

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2021
Question Paper Log Number P68824A
Publications Code 9MAO_03_2111_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS
 General Instructions for Marking

1. The total number of marks for the paper is 100 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

4. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
5. Where a candidate has made multiple responses and indicates which response they wish to submit, examiners should mark this response.
If there are several attempts at a question which have not been crossed out, examiners should mark the final answer which is the answer that is the most complete.
6. Ignore wrong working or incorrect statements following a correct answer.
7. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used.

General Principles for Mechanics Marking

(But note that specific mark schemes may sometimes override these general principles)

- Rules for M marks: correct no. of terms; dimensionally correct; all terms that need resolving (i.e. multiplied by cos or \sin) are resolved.
- Omission or extra g in a resolution is an accuracy error not method error.
- Omission of mass from a resolution is a method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- $d M$ indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of $g=9.8$ should be given to 2 or 3 SF.
- Use of $g=9.81$ should be penalised once per (complete) question.
N.B. Over-accuracy or under-accuracy of correct answers should only be penalised once per complete question. However, premature approximation should be penalised every time it occurs.
- Marks must be entered in the same order as they appear on the mark scheme.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),......then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads - if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft
- Mechanics Abbreviations
$M(A)$ Taking moments about A
N2L Newton's Second Law (Equation of Motion)
NEL Newton's Experimental Law (Newton's Law of Impact)
HL Hooke's Law
SHM Simple harmonic motion
PCLM Principle of conservation of linear momentum
RHS, LHS Right hand side, left hand side

Question		Scheme	Marks	AOs
1(a)		Use of $\mathbf{v}=\mathbf{u}+\mathbf{a} t$ with $t=2: \quad \mathbf{v}=4 \mathbf{i}+2(2 \mathbf{i}-3 \mathbf{j})$ OR integration: $\quad \mathbf{v}=(2 \mathbf{i}-3 \mathbf{j}) t+4 \mathbf{i}$, with $t=2$	M1	3.1a
		$\mathbf{v}=8 \mathbf{i}-6 \mathbf{j}$	A1	1.1b
			(2)	
1(b)		Use of $\mathbf{r}=\mathbf{u} t+\frac{1}{2} \mathbf{a} t^{2}$ at $t=3$: $(\mathbf{i}+\mathbf{j})+\left[3 \times 4 \mathbf{i}+\frac{1}{2} \times(2 \mathbf{i}-3 \mathbf{j}) \times 3^{2}\right]$ OR: find \mathbf{v} at $t=3: 4 \mathbf{i}+3(2 \mathbf{i}-3 \mathbf{j})=(10 \mathbf{i}-9 \mathbf{j})$ then use $\mathbf{r}=\frac{1}{2}(\mathbf{u}+\mathbf{v}) t$ $(\mathbf{i}+\mathbf{j})+\left[\frac{1}{2}[4 \mathbf{i}+(10 \mathbf{i}-9 \mathbf{j})] \times 3\right]$ or $\quad \mathbf{r}=\mathbf{v} t-\frac{1}{2} \mathbf{a} t^{2}$ $(\mathbf{i}+\mathbf{j})+\left[3 \times(10 \mathbf{i}-9 \mathbf{j})-\frac{1}{2} \times(2 \mathbf{i}-3 \mathbf{j}) \times 3^{2}\right]$ OR integration: $\mathbf{r}=(\mathbf{i}+\mathbf{j})+\left[(2 \mathbf{i}-3 \mathbf{j}) \frac{1}{2} t^{2}+4 t \mathbf{i}\right]$, with $t=3$	M1	3.1a
		$\mathbf{r}=22 \mathbf{i}-12.5 \mathbf{j}$	A1	2.2a
			(2)	
(4 marks)				
Notes: Accept column vectors throughout				
1a	M1	Complete method to find \mathbf{v}, using ruva t or integration (M0 if \mathbf{i} and/or \mathbf{j} is missing)		
	A1	Apply isw if they also find the speed		
1b	M1	Complete method to find the p.v. but this mark can be scored if they omit ($\mathbf{i}+\mathbf{j}$) i.e. the M1 is for the expression in the square bracket If they integrate, the M1 is earned once the expression in the square bracket is seen with $t=3$ (M0 if \mathbf{i} and/or \mathbf{j} is missing)		
	A1	cao		

Question		Scheme	Marks	AOs
		Mark parts (a) and (b) together		
2(a)		Equation of motion for A	M1	3.3
		$3 m g \sin \alpha-F-T=3 m a$	A1	1.1b
			(2)	
2(b)		Resolve perpendicular to the plane	M1	3.4
		$R=3 m g \cos \alpha$	A1	1.1b
		$F=\frac{1}{6} R$	B1	1.2
		Equation of motion for B OR for whole system	M1	3.3
		$T-m g=m a \quad$ OR $3 m g \sin \alpha-F-m g=3 m a+m a$	A1	1.1b
		Complete method to solve for a	DM1	3.1 b
		$a=\frac{1}{10} g$ *	A1*	2.2a
			(7)	
2(c)			B1	1.1b
		e.g. acceleration (of B) is constant; dependent on first B1	DB1	2.4
			(2)	
2(d)		e.g. the tensions in the two equations of motion would be different. Tension on A would be different to tension on B	B1	3.5a
			(1)	
(12 marks)				
Notes: N.B. If m's are consistently missing treat as a MR, so max (a) M 1 AO (b) M1A0B0M1A1M1A1 (c) B1B1 (d) B1 For (a) and (b), allow verification, but must see full equations of motion.				
2a	M1	Equation in T and a with correct no. of terms, condone sign errors and sin/cos confusion (If one of the 3's is missing, allow M1) N.B. Treat $\sin (3 / 5)$ etc as an A error but allow recovery		
	A1	Correct equation (allow ($-a$) instead of a in both equations)		

2b	M1	Correct no. of terms, condone sign errors and sin/cos confusion Allow if appears in (a)
	A1	Correct equation
	B1	Seen anywhere in (a) or (b), including on a diagram
	M1	Equation (for B) in T and a with correct no. of terms, condone sign errors and sin/cos confusion OR Whole system equation with correct no. of terms, condone sign errors and $\sin /$ cos confusion
	A1	Correct equation
	DM1	Complete method (trig may not be substituted), dependent on M1 in (a) and second M1 in (b) if they use two equations, or second M1 in (b) if they use one equation.
	A1*	Correct answer correctly obtained.
2 c	B1	Straight line starting at the origin (could be reflected in the t-axis). B0 if continuous vertical line at the end.
	DB1	Dependent on first B1, for any equivalent statement
2d	B1	B0 if incorrect extras

Question	Scheme	Marks	AOs
	Part (a) is a 'Show that..' so equations need to be given in full to earn A marks		
3(a)			
	Moments equation: (M1A0 for a moments inequality)	M1	3.3
	$\mathrm{M}(A), m g a \cos \theta=2 S a \sin \theta$ $\mathrm{M}(B), m g a \cos \theta+2 F a \sin \theta=2 R a \cos \theta$ $\mathrm{M}(C), F \times 2 a \sin \theta=m g a \cos \theta$ $\mathrm{M}(D), 2 R a \cos \theta=m g a \cos \theta+2 S a \sin \theta$ $\mathrm{M}(G), R a \cos \theta=F a \sin \theta+S a \sin \theta$.	A1	1.1b
	$(\downarrow) R=m g$ OR ($\leftrightarrow) F=S$	B1	3.4
	Use their equations (they must have enough) and $F \leq \mu R$ to give an inequality in μ and θ only (allow DM1 for use of $F=\mu R$ to give an equation in μ and θ only)	DM1	2.1
	$\mu \geq \frac{1}{2} \cot \theta^{*}$	A1*	2.2a
		(5)	
3(b)			
	Moments equation:	M1	3.4
	$\begin{aligned} & \mathrm{M}(A), m g a \cos \theta=2 N a \sin \theta \\ & \mathrm{M}(B), m g a \cos \theta+2 k m g a \sin \theta=2 R a \cos \theta+\frac{1}{2} m g 2 a \sin \theta \\ & \mathrm{M}(D), 2 R a \cos \theta=m g a \cos \theta+N 2 a \sin \theta \\ & \mathrm{M}(G), k m g a \sin \theta+N a \sin \theta=\frac{1}{2} m g a \sin \theta+R a \cos \theta \end{aligned}$	A1	1.1b

Question		Scheme	Marks	AOs	
		Note that $\boldsymbol{g}=10$; penalise once for whole question if $\boldsymbol{g}=9.8$			
4(a)		Use $s=u t+\frac{1}{2} a t^{2}$ vertically or any complete method to give an equation in t only	M1	3.4	
		$-70=65 \sin \alpha \times t-\frac{1}{2} \times g \times t^{2}$	A1	1.1b	
		M (A)1	1.1b		
		$t=7$ (s)	A1	1.1b	
			(4)		
4(b)			Horizontal velocity component at $A=65 \cos \alpha$ (60)	B1	3.4
		Complete method to find vertical velocity component at A	M1	3.4	
		$65 \sin \alpha-g \times 7 \quad$ OR $\quad \sqrt{(-25)^{2}+2 g \times 70}$	A1ft	1.1b	
		Sub for trig and square, add and square root : $\sqrt{60^{2}+(-45)^{2}}$	M1	3.1b	
		75 Accept $80\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	A1	1.1b	
			(5)		
4(c)		e.g. an approximate value of g has been used, the dimensions of the stone could affect its motion, spin of the stone, $g=10$ instead of 9.8 has been used, g has been assumed to be constant, wind effect, shape of the stone	B1	3.5b	
			(1)		
(10 marks)					
Notes:					
4a	M1	Complete method, correct no. of terms, condone sign errors and \sin / cos confusion			
	A1	Correct equation in t only with at most one error			
	M(A) 1	Correct equation in t only			
		N.B. For 'up and down' methods etc, the two A marks are for all the equations that they use, lose a mark for each error.			
	A1	Cao $(g=9.8,7.1$ or 7.11$) \quad(g=9.81,7.1$ or 7.12$)$			
4b	B1	Seen, including on a diagram.			
	M1	Condone sign errors and sin/cos confusion			
	Alft	Correct expression; accept negative of this, follow their t			
	M1	Sub for trig and use Pythagoras			
	A1	Cao ($g=9.8$ or $9.81,75$ or 74.8)			

Question	Scheme	Marks	AOs
	Allow column vectors throughout this question		
5(a)	Differentiate \mathbf{v} wrt t	M1	3.1a
	$\frac{3}{2} t^{-\frac{1}{2}} \mathbf{i}-2 \mathbf{j}$ isw	A1	1.1b
		(2)	
5(b)	$3 t^{\frac{1}{2}}=2 t$	M1	2.1
	Solve for t	DM1	1.1b
	$t=\frac{9}{4}$	A1	1.1b
		(3)	
5(c)	Integrate \mathbf{v} wrt t	M1	3.1a
	$\mathbf{r}=2 t^{\frac{3}{2}} \mathbf{i}-t^{2} \mathbf{j}(+\mathbf{C})$	A1	1.1b
	$t=1, \mathbf{r}=-\mathbf{j}=>\mathbf{C}=-2 \mathbf{i}$ so $\mathbf{r}=2 t^{\frac{3}{2}} \mathbf{i}-t^{2} \mathbf{j}-2 \mathbf{i}$	A1	2.2a
		(3)	
5(d)	$\sqrt{\left(3 t^{\frac{1}{2}}\right)^{2}+(2 t)^{2}}=10 \quad$ or $\left(3 t^{\frac{1}{2}}\right)^{2}+(2 t)^{2}=10^{2}$	M1	2.1
	$9 t+4 t^{2}=100$	M(A)1	1.1b
	$t=4$	A1	1.1b
	$\mathbf{r}=14 \mathbf{i}-16 \mathbf{j}$	M1	1.1b
	$\sqrt{14^{2}+(-16)^{2}}$	M1	3.1a
	$\sqrt{452}(2 \sqrt{113})(\mathrm{m})$	A1	1.1b
		(6)	
(14 marks)			

Notes:

$\mathbf{5 a}$	M1	Both powers decreasing by $1 \quad$ (M0 if vector(s) disappear but allow recovery)
	A1	cao
$\mathbf{5 b}$	M1	Complete method, using \mathbf{v}, to obtain an equation in t only, allow a sign error
	DM1	Dependent on M1,solve for t

	A1	cao
$\mathbf{5 c}$	M1	Both powers increasing by 1 (M0 if vectors disappear but allow recovery)
	A1	Correct expression without \mathbf{C}
	A1	cao
$\mathbf{5 d}$	M1	Use of Pythagoras on \mathbf{v} and 10 to set up equation in t
	M(A)1	Correct 3 term quadratic in t
	A1	cao
	M1	Substitute their numerical t value into their \mathbf{r}
	M1	Use of Pythagoras to find the magnitude of their \mathbf{r}
	A1	cso

