

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary GCE

PHYSICS B (ADVANCING PHYSICS)

[G491 MS]

Unit G491: Physics in Action

Specimen Mark Scheme

The maximum mark for this paper is **60**.

Section A		
Question Number	Answer	Max Mark
1	$C s^{-1} \checkmark ; V A^{-1} \checkmark ; J C^{-1} \checkmark$	[3]
2(a)	B✓	[1]
(b)	(1.6-0.4) / 80 = 0.015 ; V °C ⁻¹ (15 mV °C ⁻¹) ✓ evaluation ; ✓ unit	[2]
3(a)	410 \pm 20 (m pixel ⁻¹) \checkmark	
(b)	21 ± 2 (km) ✓	
(c)	Allow any response which suggests any reasonable impact of global warming or Antarctic ice-shelf loss on people, which could be environmental, demographics or academic /scientific.	
	e.g. evidence of global warming / sea levels rising / flooding lowlands / population movements / refugees .	[3]
4(a)(i)	50 ± 1 (µs) ✓	[1]
(ii)	{20 \pm 0.4 } x 10 3 (Hz) ecf consistent with (i) 🗸	[1]
(b)	Identifying no of bits /sample = 3 & samples /s = $10^6 \checkmark$	
	3 × 10° ✓	[2]
5	$Log_2(3.0/0.5) = 2.58$ so 2 is the maximum number \checkmark	[1]
	Allow reverse argument& trial and error using 2" = 3.0/0.5	
6	strength ✓ ; hardness ✓	[2]
-	Combines P=IV & R=V/I or recalls P=V ⁻ /R ✓	101
1	$V = \sqrt{(PR)} / = \sqrt{(0.5 \times 470)} ; = 15.3 (V) $	[2]
8	either justification for choice of mode should be present or calculation of median; \checkmark	
	3^{rd} mark for 3 s.f. in estimate and 1 S.F in uncertainty.	[3]
	Total section A :	[21]
9(a)(i)	F where rays parallel to principal axis meet ✓	[1]
(ii)	F would be image position if lamp were at very distant/ object fairly close to lens so image outside focal length owtte ✓ QWC: spelling, punctuation & grammar ✓	[2]
(b)(i)	1 line through points and 2 through uncertainty bars \checkmark	[1]
(ii)	intercept best estimate 0.10 m by eye ✓	
	range 0.095 to 0.105 m ✓ lower limit should be > 0.090, < 0.10; upper limit should be >0.10, <0.11 If graphs drawn inaccurately, allow values consistent with actual lines providing the lines are actually straight.	[2]
(c)(i)	it is the closest to the lens a real image can be formed /	
	object at ∞ needed for $1/v = 1/f / to give incoming waves zero curvature AW \checkmarkNOT h = 0 NOT v = f unless explained clearly, e.g. when image is a point when the object is at infinity$	[1]

Question Number	Answer	Max Mark
(ii)	$P = 1/f \checkmark = 1/0.1 = 10.0 \text{ D} \checkmark$	
	uncertainty method using \pm 5% or least or most intercept \checkmark	
	uncertainty evaluation ± 0.5 D \checkmark Allow calculation of <i>P</i> for	
	extreme values of horizontal intercept and subtraction to give	ГА]
		[4]
40(-)		[11]
10(a)	R decreases / fails / drops as 1 increases \checkmark	
	resistance per degree gets less and less as T increases, or	
	increase in temperature needed for R to half gets smaller, or	
	quantitative comparisons to the same effect, e.g. R drops by	
	100 Ω in 5° to start with but by the end it's dropping by only	
	Sensitivity is the change in the measured variable owthe per	
	unit change in the independent variable owtte; is greater at low	Þ.
	temperatures \checkmark for the mark it is essential that both the idea of	
	sensitivity as gradient of the graph and the decrease in	
	sensitivity with 1 are described.	ГА Л
(6:)	QWC. clear organisation (1)	[4]
(ID)	Connections in parallel with fixed resistor V	[1]
(11)	$R_{\text{Thermistor}} = 100 \pm 5 \Omega \checkmark \text{(evidence from graph)}$	
	$R_{\text{Total}} = 200 + R_{\text{Thermistor}} (\Omega) = 300 \Omega; \text{ ecf } \checkmark$	
	not required)	[3]
(c)(i)	X ✓	[]
(0)(1)		[1]
(ii)	advantage (near) constant sensitivity / linear (output) 🗸	
(,	NOT "just" straight line	
	disadvantage less sensitive (over most of range) / range of	
	voltages is small / battery lasts for less time 🗸	
	allow AW or other sensible quality physics	[2]
	Total	[11]
11(a)(i)	student choice sets appropriate context – no marks (0)	
(ii)	long so resistance large enough /conductance small enough to	
	measure 🗸	
	thin <u>so smaller cross sectional area</u> and therefore resistance is	
	OR reasonable current at low p d in each case, but both must	
	be justified separately.	[2]
(iii)	correct circuit diagram (circuit with A and V meters (accept	
~ /	Ωmeter) ✓	
	Clear method to include measurement of L and d of wire ✓	
	Description of calculation of resistivity / conductivity ✓	[3]

Question Number	Answer	Ma: Mar
(b)	identify systematic error / source of greatest random uncertainty ✓	
	suggest reasonable solution \checkmark	
	e.g. small resistance for good conductor needing thin long wire with difficulty in measuring diameter ✓ ,use of micrometer / Vernier caliper	
	[accept repeated readings and averaging] ✓	
	e.g. contact resistance at wire ends results in voltage drops (inside voltmeter loop) ✓ solder connections/ make firmer voltmeter contacts ✓	
	QWC: appropriate form and style 🗸	[3
(c)	p.d. and current \checkmark (allow resistance if Ω meter used in (a)(iii))	[1
	Total	- 9
12(a)	$20 \text{ (nm)} / 14 = 1.4 \times 10^{-9} \text{ m}$ accept 1 nm	
.=(*)	Method \checkmark : evaluation \checkmark	
	Allow count of molecules 13 or 15, giving d = 1.5 nm and 1.3	
	nm respectively.	
	If a bald '1nm' is given with no working, give one mark only.	
	Correct answer with 4 or more S.F. gets one mark only	[2
(b)(i)	$V = 4 \pi (0.50 / 2)^3 / 3$; = 0.065 mm ³ ≈ 0.07 mm ³	
	substitution ✓; evaluation ✓	
	Calculating 4 π (0.50) ³ / 3 = 0.52 mm ³ gets evaluation \checkmark only.	
	Correct expression followed by 0.07 mm ³ without clear	
	evaluation of V (i.e. to at least 2 SF) gets substitution \checkmark only	[2
(ii)	(300 + 280 + 280 + 260)/4 = (1120)/4 = 280 mm	
	accept bare answer	[1
(iii)	$A = \pi (280 / 2)^2$; = 6.2 x 10 ⁴ mm ² \checkmark ecf on (ii)	
	$h = V/A = 0.065 / (6.2 \times 10^4) \text{ mm}$ substitution \checkmark	
	= $1.0 \times 10^{-6} \text{ mm} = 1.0 \times 10^{-9} \text{ m}$ evaluation \checkmark	
	Accept answers in e.g. mm if correct, and correct prefix is put	
	before m on answer line.	្រ
	Total	8
	Total Section B	[39
	Paper Total	61