

Н

GCSE (9-1)

Chemistry A (Gateway Science)

J248/03: Paper 3 (Higher Tier)

General Certificate of Secondary Education

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2021

1. Annotations available in RM Assessor

Annotation	Meaning
	Correct response
X	Incorrect response
^	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

2. Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
1	alternative and acceptable answers for the same marking point
√	Separates marking points
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
_	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

3. Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet **Instructions for Examiners**. If you are examining for the first time, please read carefully **Appendix 5 Introduction to Script Marking: Notes for New Examiners**.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

The breakdown of Assessment Objectives for GCSE (9-1) in Chemistry A:

	Assessment Objective
AO1	Demonstrate knowledge and understanding of scientific ideas and scientific techniques and procedures.
AO1.1	Demonstrate knowledge and understanding of scientific ideas.
AO1.2	Demonstrate knowledge and understanding of scientific techniques and procedures.
AO2	Apply knowledge and understanding of scientific ideas and scientific enquiry, techniques and procedures.
AO2.1	Apply knowledge and understanding of scientific ideas.
AO2.2	Apply knowledge and understanding of scientific enquiry, techniques and procedures.
AO3	Analyse information and ideas to interpret and evaluate, make judgements and draw conclusions and develop and improve experimental procedures.
AO3.1	Analyse information and ideas to interpret and evaluate.
AO3.1a	Analyse information and ideas to interpret.
AO3.1b	Analyse information and ideas to evaluate.
AO3.2	Analyse information and ideas to make judgements and draw conclusions.
AO3.2a	Analyse information and ideas to make judgements.
AO3.2b	Analyse information and ideas to draw conclusions.
AO3.3	Analyse information and ideas to develop and improve experimental procedures.
AO3.3a	Analyse information and ideas to develop experimental procedures.
AO3.3b	Analyse information and ideas to improve experimental procedures.

For answers to Section A if an answer box is blank ALLOW correct indication of answer e.g. circled or underlined.

Question	Answer	Marks	AO element	Guidance
1	D ✓	1	1.1	
2	C ✓	1	2.1	
3	C ✓	1	1.1	
4	B✓	1	2.1	
5	C ✓	1	1.1	
6	A ✓	1	2.2	
7	B✓	1	2.1	
8	C ✓	1	1.1	
9	C ✓	1	2.2	
10	B✓	1	2.1	
11	C ✓	1	2.1	
12	B✓	1	2.2	
13	C ✓	1	1.2	
14	A ✓	1	1.1	
15	B✓	1	2.1	

Q	Question		Answer			rks	AO element	Guidance
16	(a)		Allotrope Diamond Graphite Graphene	Covalent bonds 4 3 3		2	2 x 1.1	
	(b)	(i)	Diamond has many strong of Which require a lot of energ	covalent bonds ✓		2	2 x 1.1	ALLOW idea that each carbon atom forms 4 strong covalent bonds / diamond is a giant covalent structure / diamond is macromolecular DO NOT ALLOW references to intermolecular forces or ionic bonds – scores 0 for question ALLOW idea that the bonds are hard to break
		(ii)	Any two from: Graphite forms layers of (coatoms Idea that graphite has weak weak forces between layers Layers can slide / slip over 6	(er) intermolecular force		2	2 x 1.1	DO NOT ALLOW references to ionic bonds – scores 0 for question ALLOW sheets for layers
	(c)		Any two from: Carbon can bond to itself Carbon can form families / g compounds Idea that carbon forms four bonding possibilities to different compounds)	bonds, which gives diffeerent elements √	rent	2	2 x 1.1	

Q	Question		Answer	Marks	AO element	Guidance
17	(a)		Second box ticked ✓	1	3.2b	
	(b)	(i)	Add water to the mixture (to dissolve substance O) ✓ Filter to obtain a pure sample of substance P ✓ Evaporate / boil / distil off water to obtain a pure sample of substance O ✓	3	3 x 3.3a	Answer must relate to P and O and be in the correct order
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 4.19, award 3 marks 2.6/6.2 = 0.41935 ✓ 0.41935 x 10 = 4.1935 ✓ 4.19 (3 significant figures) ✓	3	2 x 2.2	ALLOW ECF from incorrect division if answer x 10 ALLOW ECF for sig fig mark
	(c)		Substance M Substance O Metallic Substance P Polymer Simple Covalent One mark for each correct line	3	3 x 3.2b	

Q	uestic	on	Answer	Marks	AO element	Guidance
18	(a)		No atoms are made or lost during a chemical reaction / Idea that the mass of the products is equal to the mass of the reactants ✓	1	1.1	
	(b)		Magnesium carbonate is a solid ✓	2	2.1	
	(c)	(i)	(Solid) particles vibrate in a fixed position ✓ Idea that gas is formed / idea that the beaker is not sealed ✓ Gas particles are able to completely fill their container / gas particles (spread out and) escape from the beaker / AW ✓	2	2.2 1.1	ALLOW carbon dioxide for 'gas' ALLOW gas is released for 2 marks IGNORE references to evaporation
		(ii)	Any two from: Forces of attraction are not taken into account ✓ Size of particles are not taken into account ✓ Shape of particles are given as perfect spheres ✓	2	2 x 1.1	IGNORE references to bonds
	(d)	(i)	Any one from: Idea that MgC½ is aqueous / soluble (so can't be filtered) ✓ The solid is (left over / unreacted) magnesium carbonate / MgCO₃ ✓	1	2.2	
		(ii)	Any two from: Keep the (salt) solution / filtrate (not the solid) ✓ Evaporation (of the salt solution / filtrate) ✓ Crystallisation ✓	2	2 x 3.3b	ALLOW answers in any order ALLOW description of

Q	Question		Answer	Marks	AO element	Guidance
19	(a)	(i)	Any two from: The mass of the atom is all in the nucleus (rather than evenly spread throughout) ✓	2	2 x 1.1	Assume unqualified answer refers to the current structure of the atom
			Idea that atom has a nucleus (in the middle) ✓			ALLOW idea that atom has neutrons in the centre
			The positive charge is in the nucleus ✓			ALLOW idea that atom has protons in the centre
			Idea that the (negative charged) electrons orbit (rather than negative electrons embedded in a "pudding" of positive charge)			ALLOW idea that electrons are found in shells (rather than throughout the atom)
		(ii)	A scientist giving feedback on another scientist's experiments is peer review.	2	2 x 1.1	
			A scientist should have more confidence in results that have not been peer reviewed.			
			Peer review is important to make sure results are reproducible.			
			Peer review is not important as everyone can have a different opinion.			
			Two friends discussing science is peer review.			
			Two scientists discussing science is peer review.			

Q	uesti	on	Answer	Marks	AO element	Guidance
19	(b)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 3.36 x 10 ⁻²³ (g) award 3 marks	3		
			$20.2 \div 6.02 \times 10^{23} \checkmark$ = 3.355 x 10 ⁻²³ \(2 x 2.2	
			= 3.36×10^{-23} (g) (to 3 sf) \checkmark		1.2	ALLOW ECF for sig fig mark
		(ii)	11 ✓	1	2.1	
		(iii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 5 (mol) award 2 marks 101 ÷ 20.2 ✓ = 5 ✓	2	2 x 2.2	
	(c)		Any two from: Group 0 elements have a full outer shell (of electrons)/ 8 electrons in their outer shell \(\) Group 1 elements do not have a full outer shell (of electrons)/ have 1 electron in their outer shell \(\) A full outer shell (of electrons) is unreactive / stable \(\)	2	2 x 1.1	ALLOW named Group 0 and Group 1 elements ALLOW Group 8 instead of Group 0 ALLOW Group 1 elements lose their outer electron to become stable for 2 marks

Q	uesti	on	Answer		AO element	Guidance
20	(a)		Any one from: Copper anode is decreased in mass / the graphite anode does not decrease in mass ✓ Oxygen is formed at the graphite anode / oxygen is not formed at the copper anode ✓ Copper anode takes part in the reaction / graphite anode doesn't take part in the reaction ✓ Copper anode forms copper ions ✓	1	2.2	ALLOW positive electrode for anode and negative electrode for cathode throughout
	(b)	(i)	2H ⁺ + 2e ⁻ → H ₂ Formulae ✓ Balancing ✓	2	2 x 2.2	ALLOW any correct multiple, including fractions DO NOT ALLOW and / & instead of '+' Balancing mark is dependent on the correct formulae but ALLOW 1 mark for a balanced equation with a minor error in subscripts / formulae e.g. 2h ⁺ + 2e ⁻ → H2
		(ii)	Chlorine / Cl₂ ✓	1	2.2	DO NOT ALLOW Cl DO NOT ALLOW Chloride / Cl
		(iii)	Any two from: lons are free to move in aqueous solution ✓ lons cannot move in solid ✓ lons carry a charge / current ✓	2	2 x 2.1	DO NOT ALLOW electrons moving

Question		Answer		AO element	Guidance
(c)		B✓	3	3 x 3.2a	If C or D is chosen, score 0 for the question
		An (inert) electrode has to conduct electricity ✓ An (inert) electrode has to remain solid / not dissolve ✓			If A is chosen, allow 1 mark for an (inert) electrode has to conduct electricity

Question	Answer		AO element	Guidance
21 (a) *	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Analyses and explains the information provided to correctly identify which samples contain painkiller AND determines the purity of the samples AND Provides an explanation of how melting point data AND thin layer chromatograms relate to purity of samples There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated Level 2 (3-4 marks) Analyses and explains the information provided to correctly identify which samples contain the painkiller OR Analyses and explains the information provided to correctly determine the purity of the samples AND Provides an explanation of how melting point data OR thin layer chromatograms relate to purity of samples. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence.	6	2 x 2.2 2 x 3.1 2 x 3.2b	 AO2.2 Knowledge of melting points and chromatography Chromatography / TLC separates mixtures into pure compounds. Different substances move at different rates up the stationary phase. A pure substance only has one spot on a chromatogram. A mixture has multiple spots on a chromatogram. Pure substances have a sharp melting point. Mixtures melt over a range of temperatures. Impurities lower the melting point of a sample. Samples with the same Rf value(s) and the same melting point (range) are likely to be the same substance/mixture. AO3.1a Analyses melting point data and thin layer chromatogram to determine purity Sample A has 2 spots so is not a pure substance/is a mixture. Sample B has 2 spots so is not a pure substance/is a mixture. Sample C has one spot, so is a pure substance.

Level 1 (1-2 marks) Analyses the information provided to correctly identify whether a sample contains painkiller OR determines the purity of a sample OR Provides an explanation of how melting point data relate to purity of samples OR	 Sample A melts over a temperature range, so is a mixture. Sample B melts over a temperature range so is a mixture. Sample C has a sharp melting point, so it is a pure substance.
Provides an explanation of how thin layer chromatograms relate to purity of samples. There is an attempt at logical structure with a line of reasoning. The information is in the most part relevant. O marks No response or no response worthy of credit.	 AO3.2b Analyses data provided for purpainkiller and compares data with samples Sample A contains painkiller and another substance. Sample B contains two substances, neither of which are aspirin. Sample C only contains painkiller.
	 The Rf value of painkiller is 0.73 (0.71 – 0.75). Samples A and C also contain spots with Rf values of 0.73. Sample B does not have a spot with Rf value of 0.73. Sample C has the same melting point as painkiller. Substances in samples A and C contain spots with the same Rf value as painkiller.

Qu	Question		Answer		AO element	Guidance
	(b)		A formulation has a specific / consistent proportion of components or AW ✓	1	1.1	
	(c)	(i)	A dilute, strong acid A concentrated, weak acid A dilute, weak acid	3	3 x 1.1	
		(ii)	(No), the painkiller is a weak acid ✓ The starting pH is 4 / the starting pH is not 1 / the starting pH is not low enough for a strong acid ✓	2	2 x 3.1b	

Q	Question		Answer	Marks	AO element	Guidance
22	(a)	(i)	Limiting reactant is the reactant that is used up first / limiting reactant has fewer moles (than other reactants)	1	1.1	ALLOW the reactant that is fully used up in the reaction ALLOW idea that there isn't enough of the reactant
		(ii)	Idea that reaction <u>stops</u> once limiting reactant is consumed or used up ✓	1	1.1	
	(b)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 192.3 (g) award 3 marks	3	3 x 2.2	
			$M_{\rm r}$ of H ₂ S = 34.1 AND $M_{\rm r}$ of SO ₂ = 64.1 \checkmark			DO NOT ALLOW 34 and 64
			Moles $H_2S = (102.3 \div 34.1) = 3 \text{ (mol) } \checkmark$			ALLOW ECF from incorrect <i>M</i> _r
			Mass SO ₂ = $(3 \times 64.1) = 192.3 (g)$ ✓			ALLOW ECF from incorrect moles of H ₂ S

Qu	estic	n	Answer	Marks	AO element	Guidance
	(c)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = -1030 (kJ) award 4 marks	4		
			Bonds broken = 1388 + 1482 / 2870 (kJ) ✓ 4 x 347 = 1388 3 x 494 = 1482		3 x 2.2	
			Bonds formed = $2092 + 1836 / 3928 \text{ (kJ)} \checkmark$ $4 \times 523 = 2092$ $4 \times 459 = 1836$			
			(Bonds broken – bonds formed =) 2870 - 3928 = -1058 (kJ) ✓			ALLOW ECF from incorrect bonds broken and bonds formed calculations IGNORE (+)1058 (kJ)
			To 3 sig figs = -1060 (kJ) ✓		1 x 1.2	ALLOW ECF for sig fig mark from (+)1058 (kJ)
	(d)	(i)	Exothermic ✓	2	2 x 1.1	Second mark is dependent on correct choice of exothermic
			Products are lower in energy than reactants / energy released in making bonds is greater than the energy taken in to break bonds / AW ✓			IGNORE energy needed / energy used ALLOW more energy is released than is taken in IGNORE energy at the end is less than at the start

Q	uestion	Answer	Marks	AO element	Guidance
	(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 4 award 3 marks	3	3 x 2.2	
		990 + 10 = 1000 (cm 3) \checkmark			
		(Volume has increased by a factor of $1000 \div 10 = 100$, so concentration has been decreased by a factor of) $1000 \div 10 = 100 \checkmark$			
		(When concentration of H ⁺ is decreased by factor of 100, pH is increased by 2,) $2 + 2 = 4$			

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

