

Mark Scheme (Results)

January 2017

International GCSE Chemistry (4CH0) Paper 2C

Pearson Edexcel Certificate in Chemistry (KCH0) Paper 2C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

January 2017 Publications Code 4CH0_2C_1701_MS All the material in this publication is copyright © Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a)	air		1
(b)	hydrogen	ACCEPT H ₂	
		IGNORE H	
(c)	chlorine	ACCEPT Cl ₂	1
		IGNORE CI	
(d)	chlorine	ACCEPT Cl ₂	1
		IGNORE CI	
(e)	iron	ACCEPT Fe	1
		Total	5

Question number	Answer	Notes	Marks
2 (a) (i)	(both are) solids		1
	AND		
	(both) form alkaline solutions (in water)	ALLOW (both are) <u>slightly</u> soluble	
(ii)	(both are) gases		1
	AND		
	(both) form acidic solutions (in water)		
(b) (i)	the oxide is solid		1
(ii)	the oxide forms an acidic solution (in water)		1
(c)	M1 the lamp does not light up		2
	M2 (so this shows that) phosphorus/it does not conduct electricity	ACCEPT reverse arguments	
		Total	6

Question number	Answer	Notes	Marks
3 (a)	 M1 calcium is the most reactive; titanium is the second most reactive; tin is the least reactive OR calcium most reactive AND tin least reactive 	ACCEPT Ca > Ti > Sn	3
	M2 (because) titanium displaces tin		
	M3 (and because) titanium does not displace calcium	ACCEPT replaces ACCEPT replaces	
(b) (i)	$2AI + Fe_2O_3 \rightarrow AI_2O_3 + 2Fe$	ACCEPT multiples and halves	1
(ii)	M1 aluminium		2
	M2 because it has gained oxygen		
	OR		
	because it has lost electrons		
	OR		
	because its oxidation number has increased		
	OR		
	because its oxidation number has changed from 0 to $+3$	M2 DEP on M1	
(iii)	M1 (powders have) larger surface area		2
	M2 (therefore) faster reaction	ACCEPT reverse arguments IGNORE references to collisions between particles	
		Total	8

Question number	Answer	Notes	Marks
4 (a)	D (NH ₄ ⁺)		1
(b)	D (I ⁻)		1
(c)	A (carbonate)		1
(d)	C (blue, green, brown)		1
(e)	A (carbonate)		1
		Total	5

Question number		Answer	Notes	Marks
5 (a)	•	**	1 mark for each correct ion	2
		• () *	IGNORE charges on ion	
		*	ALLOW any combination of dots and crosses	
		-	Diagram showing sharing of electrons scores 0	
(b)	•F •F * C * F •F		 M1 all four bonding pairs correct, and only 8 electrons shown in outer shell of carbon M2 all non-bonding pairs correct IGNORE inner shells even if incorrect If rings are drawn then both bonding electrons must be in the overlapping area M2 DEP on M1 	2

(c) M3	 1 (high melting point of LiF) strong forces (of attraction) between (oppositely charged) ions / strong forces (of attraction) between Li⁺ and F⁻ 2 (good conductivity of LiF) ions are mobile 	ACCEPT strong (ionic) bonding / strong (ionic) bonds ACCEPT large amount of energy required to overcome the forces between the ions/break (ionic) bonds REJECT any reference to molecules or intermolecular forces REJECT reference to atoms ACCEPT ions can move REJECT any reference to electrons are mobile/delocalised electrons	4
		REJECT any reference to electrons are	
Ma			
	3 (low melting point of CF ₄) weak forces (of attraction) between molecules / weak intermolecular forces (of attraction)	ACCEPT weak van der Waals forces / weak London forces / weak dispersion forces ACCEPT very little energy required to overcome the intermolecular forces. ALLOW weak intermolecular bonds REJECT any references to covalent bonds broken	
M4	4 (poor conductivity of CF ₄) molecules are not charged / molecules are neutral / no charged particles	IGNORE no free electrons/all electrons used in bonding IGNORE there are no ions ALLOW no delocalised / no mobile electrons	8

Question number	Answer	Notes	Marks
6 (a) (i)	(to provide the) zymase/enzyme (that acts as a catalyst)	ALLOW (to act as a) catalyst ALLOW to increase the rate of reaction IGNORE to lower the activation energy IGNORE to start the reaction REJECT to provide (activation) energy	1
(ii)	(turns) milky / cloudy / turbid (then clear) OR <u>white</u> precipitate / <u>white</u> suspension / <u>white</u> solid (forms then disappears)		1
(iii)	30 °C	ACCEPT any temperature, or range of temperatures, between 25 and 40 °C	1

Question number	Answer	Notes	Marks
(b)	Route 1: M1 Σ (bonds broken) = $348 + (5 \times 412) + 360 + 463 + (3 \times 496)$ OR 4719 (kJ/mol) M2 Σ (bonds made) = $(4 \times 743) + (6 \times 463)$ OR 5750 (kJ/mol) Route 2: M1 Σ (bonds broken) = $348 + (5 \times 412) + 360 + (3 \times 496)$ OR 4256 (kJ/mol) M2 Σ (bonds made) = $(4 \times 743) + (5 \times 463)$	IGNORE negative sign	4
	OR 5287 (kJ/mol) M3 4719 – 5750 (kJ/mol) / M1 – M2	IGNORE negative sign	
	<pre>M4 - 1031 (kJ/mol) OR correct evaluation of M3</pre>	Sign required ACCEPT answers given to three significant figures Correct answer with no working scores 4 + 1031 (kJ/mol) scores 3	

Question number	Answer	Notes	Marks
6 (c) (i)	M1 32		2
	M2 (32 × 15.6) = 500 (kJ)	ACCEPT 499 / 499.2	
	OR $M1 \times 15.6$ correctly evaluated	Correct answer with no working scores 2	
(ii)	M1 & M2 Any two from:		2
	 mass of water / volume of water / amount of water distance of flame from the can 	IGNORE temperature of water (at start) ALLOW distance of burner from can	
	length of wick		
(iii)	Any two from:		2
	M1 heat (energy)/thermal energy is lost (to /surroundings)	IGNORE just energy lost	
	M2 incomplete combustion (of the fuel)M3 evaporation of water/fuel	IGNORE not all of the ethanol is burned	
	M3 evaporation of water/fuel	Total	13

Question number	Answer	Notes	Marks
7 (a) (i)	 M1 0.080 mol of HCl react with 0.040 mol of MgCO₃ M2 0.050 > 0.040 	 ACCEPT any method involving correct ratios of moles, eg HCl to MgCO₃ is 2:1 0.08 to 0.05 is 2:1.25 ACCEPT correct calculations involving masses 	2
(ii)	M1 $n(CO_2) = \frac{1}{2} \times 0.08(0) \text{ OR } 0.04(0)$		2
	M2 $vol(CO_2) = (0.04(0) \times 24\ 000)$		
	= 960 (cm ³)		
	OR M1 × 24 000 correctly evaluated	Correct answer with no working scores 2	
		1920 (cm ³) scores 1 mark	
(b) (i)	M1 $M_r(MgCl_2.6H_2O) = 203$		2
	M2 % yield = ((5.5 ÷ (203 x 0.050)) x 100		
	= 54	M2 CSQ on M1	
		ACCEPT any number of significant figures except one (eg reject 50)	
		Calculator value is 54.1871921182	
		REJECT answers > 100	
(ii)	Any one of:		1
	 some of the crystals remained in the filtrate (after cooling and filtration) the solution was not allowed to cool for long enough (for complete crystallisation) magnesium carbonate is impure 	IGNORE references to side reactions REJECT not all of the magnesium carbonate reacted	
		Total	7

Question number	Answer	Notes	Marks
8 (a)	<pre>M1 rate of forward reaction = rate of backward reaction</pre>	IGNORE forward reaction = backward reaction	2
	M2 concentrations of reactants/products remain/stay constant	ACCEPT amounts/masses for concentrations ACCEPT do not change for remain constant ALLOW colour remains constant ALLOW pressure remains constant IGNORE concentrations/amounts of reactants and products are the same/are equal	

Question number	Answer	Notes	Marks
8 (c)	M1 equilibrium has shifted to the left / equilibrium has shifted to the NO ₂ side / equilibrium has shifted to the reactants side	IGNORE references to Le Chatelier's principle eg an increase in temperature favours the reaction that reduces the temperature	2
	OR more NO ₂ has been produced / more reactants have been produced		
	M2 (therefore) backward reaction is endothermic	ACCEPT (forward) reaction is exothermic	
		Total	8

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R ORL