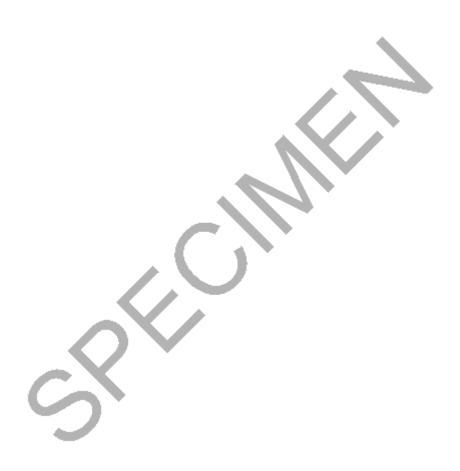


## **OXFORD CAMBRIDGE AND RSA EXAMINATIONS**

**Advanced Subsidiary GCE** 


## **CHEMISTRY B (SALTERS)**

**F332 MS** 

Unit F332: Chemistry of Natural Resources

**Specimen Mark Scheme** 

The maximum mark for this paper is 100.



| Question<br>Number | Answer                                                                                                                                                                               | Max<br>Mark |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1(a)               | Instantaneous dipole – induced dipole forces ( must be correctly spelled) between molecules (1); these are weak, so need little energy to overcome them and produce chlorine gas (1) | [2]         |
| (b)                | Volatile/gas (1);<br>toxic to humans/causes respiratory diseases/choking gas (1)                                                                                                     | [2]         |
| (c)(i)             | increase in (chloride ion) concentration (1); will cause equilibrium (position) to move to the left AW (1); (molecular) chlorine/Cl <sub>2</sub> (concentration) increases (1)       | [3]         |
| (ii)               | For example:  Cl Na <sup>+</sup> correct sized ions for Cl and Na <sup>+</sup> (1);                                                                                                  |             |
|                    | 4 oppositely charged ions or atoms around each type of ion/atom (1)                                                                                                                  | [2]         |
| (iii)              | 1st IE is low (1), 2nd IE is <u>very</u> (AW) high (1).                                                                                                                              | [2]         |
| (d)(i)             | $Cl_2 = 0 (1)$<br>HOC $l = +1 (1)$                                                                                                                                                   | [2]         |
| (ii)               | Oxidation/redox (1)                                                                                                                                                                  | [1]         |
| (iii)              | Oxidation state of Cl has increased/ Cl has lost electrons (1)                                                                                                                       | [1]         |
| (iv)               | $Cl_2 + 2e^- \rightarrow 2 Cl^-$                                                                                                                                                     | [1]         |
| (e)                | 2 HClO → 2 HCl + O <sub>2</sub> Correct formulae for products (1) Balancing (1)                                                                                                      | [2]         |

| Question<br>Number | Answer                                                                                                   | Max<br>Mark |
|--------------------|----------------------------------------------------------------------------------------------------------|-------------|
| 2(a)               | Lean burn engines/ oxygen sensors/ reduced drag/ more complete combustion/ more oxygenates (1)           | [1]         |
| (b)                | Four from:                                                                                               |             |
|                    | UV/ visible (1);<br>(warms) Earth (1);                                                                   |             |
|                    | which radiates IR (1);                                                                                   |             |
|                    | makes bonds vibrate (1) more (1)  warm Earth must be related to IR and IR related to vibration (1)       | [5]         |
| (c)(i)             | System not closed/ as CO <sub>2</sub> (g) moves away from surface/ CO <sub>2</sub> is ionised (1)        | [1]         |
| (ii)               | Pump it under pressure onto the ocean floor (1);     Pump it underground into spent oil or gas wells (1) | [2]         |
| (iii)              | The CO <sub>2</sub> combines with any minerals in the surrounding rocks to convert                       |             |
|                    | them to carbonates/ pH of Oceans might be affected (1)                                                   | [1]         |
| 3(a)               | (drain)pipes/window <u>frames</u> /doors/roofing (1)                                                     | [1]         |
| (b)(i)             | electrophilic (1) addition (1)                                                                           | [2]         |
| (ii)               | elimination (1)                                                                                          | [1]         |
| (c)(i)             | permanent dipole–permanent dipole (1)                                                                    | [1]         |
| (ii)               | — CH <sub>2</sub> —CH—CH <sub>2</sub> —CH—CH <sub>2</sub> —                                              |             |
|                    | $$ CH $_2$ -CH $$ CH $_2$ -CH $$ CH $_2$ - $$ CI                                                         |             |
|                    | $\delta$ +, $\delta$ - correct (1); indication of attraction (1)                                         | [2]         |

| Question<br>Number | Answer                                                                                                                 | Max<br>Mark |
|--------------------|------------------------------------------------------------------------------------------------------------------------|-------------|
| (d)(i)             | Hydrogen (1);                                                                                                          |             |
|                    | Ni, hot <b>or</b> Pt (room temperature and pressure) (1)                                                               | [2]         |
| (ii)               | Primary (1);                                                                                                           |             |
|                    | as OH is attached to CH <sub>2</sub> / C with OH attached to one other C (1)                                           | [2]         |
| (iii)              | Aldehyde (1)                                                                                                           | [1]         |
| (iv)               | (potassium/sodium) dichromate/ correct formula (1);                                                                    |             |
|                    | (sulfuric) acid (1); distil (1) NOT heat                                                                               | [3]         |
|                    | Maklamathana 00 Fathanal 40 (4)                                                                                        |             |
| (e)                | $M_{\rm r}$ chloroethene = 62.5 ethanol = 46 (1);<br>Moles chloroethene = 10/62.5 (=0.16) moles ethanol = 1.5/46       |             |
|                    | (=0.0326/0.033) (1);                                                                                                   |             |
|                    | = moles ethanol (0.16) (1);                                                                                            |             |
|                    | % = 0.0326 x 100/0.16 = 20% (1)                                                                                        |             |
|                    | 2 s.f. (1) Mark separately provided some working shown. ecf from figures above (allow 21% if 0.033 moles ethanol used) | [5]         |
| (f)(i)             | Peak at ~3200 cm <sup>-1</sup> (or indicated on spectrum) shows (alcoholic) OH bond (1)                                | [1]         |
|                    | Solid (i)                                                                                                              | [.,]        |
| (ii)               | Run IR spectrum for known sample of ethanol (1);                                                                       |             |
|                    | compare spectra – they have identical fingerprint/peak pattern (1)                                                     | [2]         |
| (g)(i)             | Water (1);                                                                                                             |             |
| (3)(-)             | Catalyst with high temp & pressure/ catalyst of sulfuric or phosphoric acid                                            |             |
|                    | (second mark dependant on first)                                                                                       | [2]         |
| (ii)               | (Partially) positively charged/electron deficient reagent/attracted to areas                                           |             |
| (,                 | of high electron density (1);                                                                                          |             |
|                    | Bonds by accepting a pair of electrons (can be shown via mechanism) (1);                                               | [2]         |
|                    |                                                                                                                        | [-]         |
| (iii)              | Low yield (1)                                                                                                          | [1]         |
|                    |                                                                                                                        |             |

| Question<br>Number | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Max<br>Mark |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 4(a)(i)            | Any carbon compound with chlorine and fluorine only (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [1]         |
| (ii)               | High heat of vaporisation/volatile/non-toxic/unreactive (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [1]         |
| (b)                | In the stratosphere/ upper atmosphere (1); they break down under the influence of <a (1)<="" c–cl"="" c–f="" href="https://high.frequency.com/high-energy/high-frequency.com/high-energy/high-frequency.com/high-energy/high-frequency.com/high-energy/high-frequency.com/high-energy/high-frequency.com/high-energy/high-frequency.com/high-energy/high-frequency.com/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-energy/high-en&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;&lt;/td&gt;&lt;td&gt;to form chlorine atoms/ radicals/ Cl (1);&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;&lt;/td&gt;&lt;td&gt;that catalyse the breakdown of ozone (1) QWC: link between first and second marking points or first and third [1]&lt;/td&gt;&lt;td&gt;[4]&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;(c)&lt;/td&gt;&lt;td&gt;So much data was being collected that any outside expected ranges was discarded (1);&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;&lt;/td&gt;&lt;td&gt;values for ozone concentration were significantly below expected values (1)&lt;/td&gt;&lt;td&gt;[2]&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;(d)(i)&lt;/td&gt;&lt;td&gt;&lt;math&gt;O_3 \rightarrow O_2 + O&lt;/math&gt;&lt;/td&gt;&lt;td&gt;[1]&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;(ii)&lt;/td&gt;&lt;td&gt;Hydrocarbons provide an alternative to equation 4.2 (1); so less ozone is broken down/ more ozone is made because of increased O (1)&lt;/td&gt;&lt;td&gt;[2]&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;(iii)&lt;/td&gt;&lt;td&gt;Photochemical smog/ an effect like breathing difficulties (1)&lt;/td&gt;&lt;td&gt;[1]&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;(e)(i)&lt;/td&gt;&lt;td&gt;&lt;math&gt;\delta&lt;/math&gt;+ on carbon, &lt;math&gt;\delta&lt;/math&gt;- on fluorines (1)&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;(ii)&lt;/td&gt;&lt;td&gt;Mention of electronegativity (1); Fluorine more electronegative than carbon (1)&lt;/td&gt;&lt;td&gt;[2]&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;(iii)&lt;/td&gt;&lt;td&gt;Yes, the charges do not balance (1);&lt;br&gt;Shape is tetrahedral (1)&lt;/td&gt;&lt;td&gt;[2]&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;(f)(i)&lt;/td&gt;&lt;td&gt;UV/radiation (1); does not have enough energy/ does not have high enough frequency (1) REJECT for second mark answers that imply intensity of radiation " is="" scores="" strong="" stronger="" td="" than=""><td>[3]</td></a> | [3]         |
| (ii)               | $467/6.02 \times 10^{23}$ (1) × 1000 = 7.75(7)/ 7.76 × 10 <sup>-19</sup> J (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [2]         |
| (iii)              | 7.757 x $10^{-19}$ ecf/ 6.63 x $10^{-34}$ (1) = 1.17 x $10^{15}$ (1) Hz (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [3]         |

| Question<br>Number | Answer                                                                                                                                                                | Max<br>Mark |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 5(a)(i)            | CH <sub>3</sub> H  C=C correct (1);  C=C correct (2)  CH <sub>3</sub> H                                                                                               |             |
|                    | $\begin{array}{c ccc} CH_3 & H & & & \\ & &   & &   & & \\C &C & & & & (1) & & & \\ & &   & &   & & & \\ CH_3 & H & & & & & \end{array}$                              | [3]         |
| (ii)               | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                 |             |
|                    | Correct structure for part of repeat from butadiene (1); Correct structure for part of repeat from styrene (1)                                                        | [2]         |
| (iii)              | Add bromine water (1); Colour stays brown with rubber in part (i) (1); Bromine water is decolourised/ colour changes from brown to colourless with rubber in (ii) (1) | [3]         |
| (b)                | $\begin{array}{cccc} CH_3 & CH_2 & & \\ & &   & \\ C & &   & \\ & &   & \\ & & CH_2 & H & \\ \end{array}$                                                             | [1]         |
| (c)                | The C=C double bond can't be rotated (1)                                                                                                                              | [1]         |
| (d)                | Softens/ flows/ melts when heated/ warmed (1)                                                                                                                         | [1]         |

| Question<br>Number | Answer                                                 | Max<br>Mark |
|--------------------|--------------------------------------------------------|-------------|
| (0)                | (anguah) angray(1):                                    |             |
| (e)                | (enough) energy(1);                                    |             |
|                    | to break bonds (1);                                    |             |
|                    | breaking down structure (1)                            | [3]         |
| (f)                | strong S–S bonds (1);                                  |             |
|                    | stop chains sliding over each other (1)                |             |
|                    | relation between strong bonds and stopping sliding (1) |             |
|                    | path of lower $E_a$ (1);                               |             |
|                    | molecules contain sulfur (1);                          |             |
|                    | form intermediates (1)                                 | [6]         |
|                    | Paper Total                                            | [100]       |